首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1585篇
  免费   57篇
  国内免费   5篇
测绘学   33篇
大气科学   112篇
地球物理   419篇
地质学   414篇
海洋学   152篇
天文学   332篇
综合类   4篇
自然地理   181篇
  2021年   16篇
  2020年   20篇
  2019年   17篇
  2018年   23篇
  2017年   25篇
  2016年   50篇
  2015年   36篇
  2014年   31篇
  2013年   76篇
  2012年   52篇
  2011年   56篇
  2010年   65篇
  2009年   79篇
  2008年   55篇
  2007年   57篇
  2006年   73篇
  2005年   66篇
  2004年   81篇
  2003年   59篇
  2002年   47篇
  2001年   49篇
  2000年   40篇
  1999年   26篇
  1998年   37篇
  1997年   30篇
  1996年   19篇
  1995年   25篇
  1994年   27篇
  1993年   17篇
  1992年   30篇
  1991年   13篇
  1990年   22篇
  1989年   15篇
  1988年   10篇
  1987年   18篇
  1986年   14篇
  1985年   22篇
  1984年   20篇
  1983年   24篇
  1982年   21篇
  1981年   24篇
  1980年   21篇
  1979年   20篇
  1978年   20篇
  1977年   16篇
  1975年   12篇
  1974年   10篇
  1973年   11篇
  1972年   8篇
  1968年   5篇
排序方式: 共有1647条查询结果,搜索用时 15 毫秒
151.
Changes in monthly baseflow across the U.S. Midwest   总被引:1,自引:0,他引:1  
Characterizing streamflow changes in the agricultural U.S. Midwest is critical for effective planning and management of water resources throughout the region. The objective of this study is to determine if and how baseflow has responded to land alteration and climate changes across the study area during the 50‐year study period by exploring hydrologic variations based on long‐term stream gage data. This study evaluates monthly contributions to annual baseflow along with possible trends over the 1966–2016 period for 458 U.S. Geological Survey streamflow gages within 12 different Midwestern states. It also examines the influence of climate and land use factors on the observed baseflow trends. Monthly contribution breakdowns demonstrate how the majority of baseflow is discharged into streams during the spring months (March, April, and May) and is overall more substantial throughout the spring (especially in April) and summer (June, July, and August). Baseflow has not remained constant over the study period, and the results of the trend detection from the Mann–Kendall test reveal that baseflows have increased and are the strongest from May to September. This analysis is confirmed by quantile regression, which suggests that for most of the year, the largest changes are detected in the central part of the distribution. Although increasing baseflow trends are widespread throughout the region, decreasing trends are few and limited to Kansas and Nebraska. Further analysis reveals that baseflow changes are being driven by both climate and land use change across the region. Increasing trends in baseflow are linked to increases in precipitation throughout the year and are most prominent during May and June. Changes in agricultural intensity (in terms of harvested corn and soybean acreage) are linked to increasing trends in the central and western Midwest, whereas increasing temperatures may lead to decreasing baseflow trends in spring and summer in northern Wisconsin, Kansas, and Nebraska.  相似文献   
152.
Both the rate and the vertical distribution of soil disturbance modify soil properties such as porosity, particle size, chemical composition and age structure; all of which play an important role in a soil's biogeochemical functioning. Whereas rates of mixing have been previously quantified, the nature of bioturbation's depth dependence remains poorly constrained. Here we constrain, for the first time, the relationship between mixing rate and depth in a bioturbated soil in northeast Queensland, Australia using a novel method combining OSL (optically‐stimulated luminescence) ages and meteoric beryllium‐10 (10Be) inventories. We find that the best fit mixing rate decreases non‐linearly with increasing soil depth in this soil and the characteristic length scale of 0.28 m over which the mixing coefficient decays is comparable to reported rooting depth coefficients. In addition we show that estimates of surface mixing rates from OSL data are highly dependent on erosion rate and that erosion rate must be constrained if accurate mixing rates are to be quantified. We calculate surface diffusion‐like mixing coefficients of 1.8 × 10?4 and 2.1 × 10?4 m2 yr?1 for the studied soil for two different estimates of soil erosion. © 2014 The Authors. Earth Surface Processes and Landforms Published by John Wiley & Sons Ltd.  相似文献   
153.
Temporal patterns in specific runoff, dissolved organic carbon concentrations [DOC] and fluxes were examined during two periods: 1994–1997 (period 1) and 2007–2009 (period 2) in five adjacent tributary catchments of Lake Simcoe, the largest lake in southern Ontario, Canada. The catchments displayed similar patterns of land use change with increases in urbanization (5–16%) and forest cover (0.2–4%) and declines in agriculture (4–8%) between 1994 and 2008. Climate in the catchments was similar; temperature increased slightly, but no significant change in precipitation was observed. Despite similar pattern of climate and land use, runoff responses and tributary [DOC] were different across the catchments. Following a very dry year (i.e. 1999), runoff increased steadily until the end of record. We observed increased variability in tributary [DOC] and higher DOC exports in period 2. This led to ~10% increase in [DOC] and a 13% increase in flux between the two study periods. Between the two periods, [DOC] increased by 15% in spring and 25% in summer, whereas flux increased by 17% in spring and 48% in summer. [DOC] was consistently higher in the growing (summer + autumn) than the dormant (winter + spring, minus spring melt months) seasons, but no unique pattern or simple linear flow/concentrations relationships existed. This suggests complex spatial and temporal pattern to runoff controls on DOC and flow dynamics in adjacent catchments. We therefore caution against extrapolating from monitored to unmonitored catchments. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
154.
Effects of agricultural land management practices on surface runoff are evident at local scales, but evidence for watershed‐scale impacts is limited. In this study, we used the Soil and Water Assessment Tool model to assess changes in downstream flood risks under different land uses for the large, intensely agricultural, Raccoon River watershed in Iowa. We first developed a baseline model for flood risk based on current land use and typical weather patterns and then simulated the effects of varying levels of increased perennials on the landscape under the same weather patterns. Results suggest that land use changes in the Raccoon River could reduce the likelihood of flood events, decreasing both the number of flood events and the frequency of severe floods. The duration of flood events were not substantially affected by land use change in our assessment. The greatest flood risk reduction was associated with converting all cropland to perennial vegetation, but we found that converting half of the land to perennial vegetation or extended rotations (and leaving the remaining area in cropland) could also have major effects on reducing downstream flooding potential. We discuss the potential costs of adopting the land use change in the watershed to illustrate the scale of subsidies required to induce large‐scale conversion to perennially based systems needed for flood risk reduction. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
155.
156.
The Q-natural flood management project has co-developed with the Environment Agency 18 monitored micro-catchments (~1 km2) in Cumbria, UK installing calibrated flumes aimed at quantifying the potential shift in observed flows resulting from a range of nature-based-solutions installed by local organizations. The small-scale reduces the influence of variability characterizing larger catchments that would otherwise mask any such shifts, which we attempt to relate to a shift in model parameters. This paper demonstrates an approach to applying donor-parameter-shifts obtained from modelling two of the paired micro-catchments to a much larger scale, in order to understand the potential for improved distributed modelling of nature-based solutions in the form of additional tree-planting. The models include a rainfall-runoff model, Dynamic Topmodel, and a 2D hydrodynamic model, JFlow, permitting analysis of changes in hillslope processes and channel hydrodynamics resulting from a range of distributed measures designed to emulate natural hydrological processes that evaporate, store or infiltrate flows. We report on attempts to detect shift in hydrological response using one of the paired-micro-catchment moorland versus forestry sites in Lorton using Dynamic Topmodel. A donor-parameter-shift approach is used in a hypothetical experiment to represent new woodland in a much larger catchment, although testing all combinations of spatial planting strategies, responses to multiple-extremes, failure-modes and changes to synchronization becomes intractable to support good decision making. We argue that the problem can be re-framed to use donor-parameter-shifts at multi-local-scale catchments above communities known to be at risk, commensurate with most of the evidence of NbS impacts being effective at the small scale (ca. 10 km2). This might lead to more effective modelling to help catchment managers prioritize those communities-at-risk where there is more evidence that NbS might be effective.  相似文献   
157.
Active wildfire seasons in the western U.S. warrant the evaluation of post-fire forest management strategies. Ground-based salvage logging is often used to recover economic loss of burned timber. In unburned forests, ground-based logging often follows best management practices by leaving undisturbed areas near streams called stream buffers. However, the effectiveness of these buffers has not been tested in a post-wildfire setting. This experiment tested buffer width effectiveness with a novel field-simulated rill experiment using sediment-laden runoff (25 g/L) released over 40 min at evenly timed flow rates (50, 100 and 150 L/min) to measure surface runoff travel length and sediment concentration under unburned and high and low soil burn severity conditions at 2-, 10- and 22-month post-fire. High severity areas 2-month post-fire had rill lengths of up to 100 m. Rill length significantly decreased over time as vegetation regrowth provided ground cover. Sediment concentration and sediment dropout rate also varied significantly by soil burn severity. Sediment concentrations were 19 g/L for the highest flow 2-month post-fire and reduced to 6.9–14 g/L 10-month post-fire due to abundant vegetation recovery. The amount of sediment dropping out of the flow consistently increased over the study period with the low burn severity rate of 1.15 g L−1 m−1 approaching the unburned rate of 1.29 g L−1 m−1 by 2-year post-fire. These results suggest that an often-used standard, 15 m buffer, was sufficient to contain surface runoff and reduce sediment concentration on unburned sites, however buffers on high burn severity sites need to be eight times greater (120 m) immediately after wildfire and four times greater (60 m) 1-year post-fire. Low burn severity areas 1-year post-fire may need to be only twice the width of an unburned buffer (30 m), and 2-year post-fire these could return to unburned widths.  相似文献   
158.
Soil water dynamics are central in linking and regulating natural cycles in ecohydrology, however, mathematical representation of soil water processes in models is challenging given the complexity of these interactions. To assess the impacts of soil water simulation approaches on various model outputs, the Soil and Water Assessment Tool was modified to accommodate an alternative soil water percolation method and tested at two geographically and climatically distinct, instrumented watersheds in the United States. Soil water was evaluated at the site scale via measured observations, and hydrologic and biophysical outputs were analysed at the watershed scale. Results demonstrated an improved Kling–Gupta Efficiency of up to 0.3 and a reduction in percent bias from 5 to 25% at the site scale, when soil water percolation was changed from a threshold, bucket-based approach to an alternative approach based on variable hydraulic conductivity. The primary difference between the approaches was attributed to the ability to simulate soil water content above field capacity for successive days; however, regardless of the approach, a lack of site-specific characterization of soil properties by the soils database at the site scale was found to severely limit the analysis. Differences in approach led to a regime shift in percolation from a few, high magnitude events to frequent, low magnitude events. At the watershed scale, the variable hydraulic conductivity-based approach reduced average annual percolation by 20–50 mm, directly impacting the water balance and subsequently biophysical predictions. For instance, annual denitrification increased by 14–24 kg/ha for the new approach. Overall, the study demonstrates the need for continued efforts to enhance soil water model representation for improving biophysical process simulations.  相似文献   
159.
160.
We employ a computationally efficient fault system earthquake simulator, RSQSim, to explore effects of earthquake nucleation and fault system geometry on earthquake occurrence. The simulations incorporate rate- and state-dependent friction, high-resolution representations of fault systems, and quasi-dynamic rupture propagation. Faults are represented as continuous planar surfaces, surfaces with a random fractal roughness, and discontinuous fractally segmented faults. Simulated earthquake catalogs have up to 106 earthquakes that span a magnitude range from ~M4.5 to M8. The seismicity has strong temporal and spatial clustering in the form of foreshocks and aftershocks and occasional large-earthquake pairs. Fault system geometry plays the primary role in establishing the characteristics of stress evolution that control earthquake recurrence statistics. Empirical density distributions of earthquake recurrence times at a specific point on a fault depend strongly on magnitude and take a variety of complex forms that change with position within the fault system. Because fault system geometry is an observable that greatly impacts recurrence statistics, we propose using fault system earthquake simulators to define the empirical probability density distributions for use in regional assessments of earthquake probabilities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号