全文获取类型
收费全文 | 164篇 |
免费 | 2篇 |
专业分类
测绘学 | 1篇 |
大气科学 | 5篇 |
地球物理 | 17篇 |
地质学 | 47篇 |
海洋学 | 6篇 |
天文学 | 86篇 |
自然地理 | 4篇 |
出版年
2020年 | 1篇 |
2018年 | 1篇 |
2017年 | 1篇 |
2015年 | 2篇 |
2014年 | 2篇 |
2013年 | 3篇 |
2012年 | 1篇 |
2011年 | 2篇 |
2010年 | 4篇 |
2009年 | 5篇 |
2008年 | 2篇 |
2007年 | 2篇 |
2006年 | 4篇 |
2005年 | 4篇 |
2004年 | 4篇 |
2003年 | 3篇 |
2002年 | 3篇 |
2001年 | 3篇 |
2000年 | 3篇 |
1997年 | 1篇 |
1996年 | 3篇 |
1995年 | 6篇 |
1994年 | 4篇 |
1993年 | 5篇 |
1992年 | 2篇 |
1991年 | 4篇 |
1990年 | 5篇 |
1989年 | 1篇 |
1988年 | 4篇 |
1987年 | 3篇 |
1986年 | 4篇 |
1985年 | 3篇 |
1984年 | 3篇 |
1983年 | 6篇 |
1982年 | 3篇 |
1981年 | 11篇 |
1980年 | 6篇 |
1979年 | 2篇 |
1978年 | 4篇 |
1977年 | 5篇 |
1976年 | 4篇 |
1975年 | 2篇 |
1974年 | 6篇 |
1973年 | 5篇 |
1972年 | 5篇 |
1971年 | 4篇 |
1970年 | 3篇 |
1965年 | 1篇 |
1963年 | 1篇 |
排序方式: 共有166条查询结果,搜索用时 15 毫秒
91.
Abstract— Anorthite‐rich chondrules in CR and CH carbonaceous chondrites consist of magnesian low‐Ca pyroxene and forsterite phenocrysts, FeNi‐metal nodules, interstitial anorthite, Al‐Ti‐Cr‐rich low‐Ca and high‐Ca pyroxenes, and crystalline mesostasis composed of silica, anorthite and high‐Ca pyroxene. Three anorthite‐rich chondrules contain relic calcium‐aluminum‐rich inclusions (CAIs) composed of anorthite, spinel, ±Al‐diopside, and ± forsterite. A few chondrules contain regions which are texturally and mineralogically similar to magnesian (type I) chondrules and consist of forsterite, low‐Ca pyroxene and abundant FeNi‐metal nodules. Anorthite‐rich chondrules in CR and CH chondrites are mineralogically similar to those in CV and CO carbonaceous chondrites, but contain no secondary nepheline, sodalite or ferrosilite. Relatively high abundances of moderately‐volatile elements such as Cr, Mn and Si in the anorthite‐rich chondrules suggest that these chondrules could not have been produced by volatilization of the ferromagnesian chondrule precursors or by melting of the refractory materials only. We infer instead that anorthite‐rich chondrules in carbonaceous chondrites formed by melting of the reduced chondrule precursors (olivine, pyroxenes, FeNi‐metal) mixed with the refractory materials, including relic CAIs, composed of anorthite, spinel, high‐Ca pyroxene and forsterite. The observed mineralogical and textural similarities of the anorthite‐rich chondrules in several carbonaceous chondrite groups (CV, CO, CH, CR) may indicate that these chondrules formed in the region(s) intermediate between the regions where CAIs and ferromagnesian chondrules originated. This may explain the relative enrichment of anorthite‐rich chondrules in 16O compared to typical ferromagnesian chondrules (Russell et al., 2000). 相似文献
92.
The inorganic chemical investigation added in August 1972 to the Viking Lander scientific package will utilize an energy-dispersive X-ray fluorescence spectrometer in which four sealed, gas-filled proportional counters will detect X-rays emitted from samples of the Martian surface materials irradiated by X-rays from radioisotope sources (55Fe and 109Cd). The output of the proportional counters will be subjected to pulse-height analysis by an on-board step-scanning single-channel analyzer with adjustable counting periods. The data will be returned to Earth, via the Viking Orbiter relay system, and the spectra constructed, calibrated, and interpreted here. The instrument is inside the Lander body, and samples are to be delivered to it by the Viking Lander Surface Sampler. Calibration standards are an integral part of the instrument.The results of the investigation will characterize the surface materials of Mars as to elemental composition with accuracies ranging from a few tens of parts per million (at the trace-element level) to a few percent (for major elements) depending on the element in question. Elements of atomic number 11 or less are determined only as a group, though useful estimates of their individual abundances maybe achieved by indirect means. The expected radiation environment will not seriously hamper the measurements. Based on the results, inferences can be drawn regarding (1) the surface mineralogy and lithology; (2) the nature of weathering processes, past and present, and the question of equilibrium between the atmosphere and the surface; and (3) the extent and type of differentiation that the planet has undergone.The Inorganic Chemical Investigation supports and is supported by most other Viking Science investigations. 相似文献
93.
A.M. Kudo S.E. Barker K. Keil Marvin H. Beeson 《Geochimica et cosmochimica acta》1982,46(12):2427-2434
Major and rare earth element (REE) data for basalts from Holes 483, 483B, and 485A of DSDP Leg 65, East Pacific Rise, mouth of the Gulf of California, support a simple fractional crystallization model for the genesis of rocks from this suite. The petrography and mineral chemistry (presented in detail elsewhere) provide no evidence for magma mixing, but rather a simple multistage cooling process. Based on its lowest TiO2 content (0.88%), ratio (0.95 with total Fe as FeO), and Mg# (100 ), sample 483-17-2-(78–83) has been selected as the most primitive primary magma of the samples analyzed. This is supported by the REE data which show this sample has the lowest total REE content, a (chondrite-normalized) = 0.36, and = 1.05. Because other samples analyzed have higher SiO2, lower Mg#, and a negative Eu anomaly ( as low as 0.89), they are most likely derivative magmas. Wright-Doherty and trace element modelling support fractional crystallization of 14.1% plagioclase (An88), 6.7% olivine (Fo86), and 4.7% clinopyroxene (Wo41En49Fs10) from 483-17-2-(78–83) to form the least differentiated sample with Mg# = 63. The of this derivative magma is almost identical to the parent magma (0.35 to 0.36), but the other samples have higher (0.45 to 0.51), more total REE, and lower Mg# (60 to 56). Both Wright-Doherty and trace element modelling indicate that the primary magma chosen cannot produce these more evolved samples. For the major elements, the TiO2 and P2O5 are too low in the calculated versus the observed (1.38 to 1.90; 0.11 to 0.17, respectively, for example). Rayleigh fractionation calculates a lower and requires about 60% crystal removal versus 40% for the Wright-Doherty. These more evolved samples must be derived from a parent magma different from the one selected here and, unfortunately, not sampled in this study. A magma formed by a smaller degree of partial melting with slightly more residual clinopyroxene left in the mantle than for sample 483-17-2-(78–83) is required. 相似文献
94.
The Plainview. Texas, meteorite is a polymict-brecciated H-group chondrite composed of recrystallized light-colored portions embedded in a well-compacted, dense, somewhat recrystallized, dark-colored matrix. Both portions consist of equilibrated silicates (H5 classification), but a small number of silicate grains and unequilibrated lithic fragments not compatible with equilibrated ordinary H-group material are present in the dark-colored matrix. Lithic fragments include: (i) dark-colored, more or less altered, type II carbonaceous chondrites. (ii) unequilibrated ordinary chondrites and (iii) light-colored, unequilibrated and equilibrated fragments, some of which are compositionally similar to the host. Also present are fragment-like dark areas that are highly-shocked host material and not true lithic fragments (pseudo-fragments). Conclusions: Plainview represents a complex regolith breccia formed by repeated impact episodes. Recrystallized, light-colored portions represent surface or near-surface material of a small (asteroidal-sized) parent body. Impacts broke up this material to form fine-grained, dark material which enclosed light-colored protolith. Lithic fragments (i-iii) and some unequilibrated silicate grains and chondrules (apparently derived from unequilibrated chondrites) were embedded in the dark matrix during these repeated impacts. Xenolitlils of carbonaceous and unequilibrated ordinary chondrites are either residues of projectiles that impacted the Plainview parent body, or material from coexisting regoliths impact-splashed into Plainview regolith. Chondrules and silicate grains in the dark matrix which differ from H-group material are likely related to these xenoliths and their regoliths. Light-colored lithic fragments may represent shock-melted chondritic material, sometimes compositionally-modified, or new, achondritic meteoritic types. Unequilibrated and carbonaceous lithic fragments in the dark-colored host matrix indicate that equilibration of the host occurred before incorporation of the fragments and that compaction and lithification of the Plainview regolith to form a coherent meteorite must have occurred at temperatures below 300°C and/or on a short time scale. 相似文献
95.
A petrographic survey of > 1600 chondrules in thin-sections of 12 different mildly to highly unequilibrated H-, L-, and LL-chondrites, as well as morphological and textural study of 141 whole chondrules separated from 11 of the same chondrites, was used to determine the relative abundances of definable chondrule primary textural types. Percentage abundances of various chondrule types are remarkably similar in all chondrites studied and are ~ 47–52 porphyritic olivine-pyroxene (POP), 15–27 porphyritic olivine (PO), 9–11 porphyritic pyroxene (PP), 3–4 barred olivine (BO), 7–9 radial pyroxene (RP), 2–5 granular olivine-pyroxene (GOP), 3–5 cryptocrystalline (C), and ≤ 1 metallic (M). Neither chondrule size nor shape is strongly correlated with textural type. Compound and cratered chondrules, which are interpreted as products of collisions between plastic chondrules, comprise ~ 2–28% of nonporphyritic (RP, GOP, C) but only ~ 2–9% of porphyritic (POP, PO, PP, BO) chondrules, leading to a model-dependent implication that nonporphyritic chondrules evolved at number densities (chondrules per unit volume of space) which were 102 to 104 times greater than those which prevailed during porphyritic chondrule formation (total range of ~ 1 to ~ 106 m?3). Distinctive “rims” of fine-grained sulfides and/or silicates occur on both porphyritic and nonporphyritic types and appear to post-date chondrule formation. Apparently, either the same process(es) contributed chondrules to all unequilibrated ordinary chondrites or, if genetically different, the various chondrule types were well mixed before incorporation into chondrites. Melting of pre-existing materials is the mechanism favored for chondrule formation. 相似文献
96.
Abstract— ‐Major surface fissures and relatively large‐scale, angular surface irregularities are expected to have been present on many asteroids at early stages in their histories as a byproduct of at least two processes (impact disruption and reassembly into rubble piles for all classes of asteroid and, for carbonaceous chondrite parent bodies, aqueous alteration) which led to the low bulk densities currently being observed for asteroids. However, in all cases where high‐enough resolution images exist, such abrupt, deep irregularities are not observed. We model the spatial redistribution of impact‐generated regolith on an asteroid with an idealized irregular shape to show how the complex gravitational field of such a body will lead to the systematic infilling of deep valleys in the surface. Our analysis emphasizes the high efficiency with which regolith redistribution can act to disguise the internal structures of asteroids with sizes in the 20–100 km range. 相似文献
97.
Igneous History of the Aubrite Parent Asteroid: Evidence from the Norton County Enstatite Achondrite
Akihiko Okada Klaus Keil G. Jeffrey Taylor Horton Newsom 《Meteoritics & planetary science》1988,23(1):59-74
Abstract— We studied numerous specimens of the Norton County enstatite achondrite (aubrite) by optical microscopy, electron microprobe, and neutron-activation analysis. Our main conclusions are the following: 1. Norton County is a fragmental impact breccia, consisting of a clastic matrix made mostly of crushed enstatite, into which are embedded a variety of mineral and lithic clasts of both igneous and impact melt origin. 2. The Norton County precursor materials were igneous rocks, mostly plutonic orthopyroxenites, not grains formed by condensation from the solar nebula. 3. The Mg-silicate-rich aubrite parent body experienced extensive melting and igneous differentiation, causing formation of diverse lithologies, some of which have not been described previously. These lithologies include dunites (represented by forsterite crystals), plutonic orthopyroxenites (represented by most enstatite crystals in the matrix), plutonic pyroxenites (the pyroxenitic clasts), and plagioclase-silica rocks (like the feldspathic clasts). Presence of impact melt breccias (the microporphyritic clasts and the diopside-plagioclase-silica clast) of still different compositions further attest to the lithologic diversity of the aubrite parent body. 相似文献
98.
T. J. Fagan G. J. Taylor K. Keil T. L. Hicks M. Killgore T. E. Bunch J. H. Wittke D. W. Mittlefehldt R. N. Clayton T. K. Mayeda O. Eugster S. Lorenzetti M. D. Norman 《Meteoritics & planetary science》2003,38(4):529-554
Abstract— The meteorite Northwest Africa 773 (NWA 773) is a lunar sample with implications for the evolution of mafic magmas on the moon. A combination of key parameters including whole‐rock oxygen isotopic composition, Fe/Mn ratios in mafic silicates, noble gas concentrations, a KREEP‐like rare earth element pattern, and the presence of regolith agglutinate fragments indicate a lunar origin for NWA 773. Partial maskelynitization of feldspar and occasional twinning of pyroxene are attributed to shock deformation. Terrestrial weathering has caused fracturing and precipitation of Carich carbonates and sulfates in the fractures, but lunar minerals appear fresh and unoxidized. The meteorite is composed of two distinct lithologies: a two‐pyroxene olivine gabbro with cumulate texture, and a polymict, fragmental regolith breccia. The olivine gabbro is dominated by cumulate olivine with pigeonite, augite, and interstitial plagioclase feldspar. The breccia consists of several types of clasts but is dominated by clasts from the gabbro and more FeO‐rich derivatives. Variations in clast mineral assemblage and pyroxene Mg/(Mg + Fe) and Ti/(Ti + Cr) record an igneous Fe‐enrichment trend that culminated in crystallization of fayalite + silica + hedenbergite‐bearing symplectites. The Fe‐enrichment trend and cumulate textures observed in NWA 773 are similar to features of terrestrial ponded lava flows and shallow‐level mafic intrusives, indicating that NWA 773 may be from a layered mafic intrusion or a thick, differentiated lava flow. NWA 773 and several other mafic lunar meteorites have LREE‐enriched patters distinct from Apollo and Luna mare basalts, which tend to be LREE‐depleted. This is somewhat surprising in light of remote sensing data that indicates that the Apollo and Luna missions sampled a portion of the moon that was enriched in incompatible heatproducing elements. 相似文献
99.
Abstract— Studies of 52 specimens recovered from the find site of the original Travis County meteorite reveal the presence of two distinct meteorites. Travis County (a), which includes the original Travis County meteorite, is the more abundant meteorite and is classified as an H5(S4) shock-blackened chondrite. Travis County (b) is classified as an H4(S2) chondrite with rare chondritic clasts of H group parentage, indicating that the meteorite is a breccia. 相似文献
100.
Timothy j. Fagan Edward r. d. Scott Klaus Keil Thomas f. Cooney Shiv k. Sharma 《Meteoritics & planetary science》2000,35(2):319-329
Abstract— The enstatite chondrite reckling peak (rkp) a80259 contains feldspathic glass, kamacite, troilite, and unusual sets of parallel fine‐grained enstatite prisms that formed by rapid cooling of shock melts. Metallic Fe,Ni and troilite occur as spherical inclusions in feldspathic glass, reflecting the immiscible Fe‐Ni‐S and feldspathic melts generated during the impact. The Fe‐Ni‐S and feldspathic liquids were injected into fractures in coarse‐grained enstatite and cooled rapidly, resulting in thin (≤ 10 μm) semicontinuous to discontinuous veins and inclusion trails in host enstatite. Whole‐rock melt veins characteristic of heavily shocked ordinary chondrites are conspicuously absent. Raman spectroscopy shows that the feldspathic material is a glass. Elevated MgO and SiO2 contents of the glass indicate that some enstatite and silica were incorporated in the feldspathic melt. Metallic Fe,Ni globules are enclosed by sulfide and exhibit Nienrichment along their margins characteristic of rapid crystallization from a Fe‐Ni‐S liquid. Metal enclosed by sulfide is higher in Si and P than metal in feldspathic glass and enstatite, possibly indicating lower O fugacities in metal/sulfide than in silicate domains. Fine‐grained, elongate enstatite prisms in troilite or feldspathic glass crystallized from local pyroxene melts that formed along precursor grain boundaries, but most of the enstatite in the target rock remained solid during the impact and occurs as deformed, coarsegrained crystals with lower CaO, Al2O3, and FeO than the fine‐grained enstatite. Reckling Peak A80259 represents an intermediate stage of shock melting between unmelted E chondrites and whole‐rock shock melts and melt breccias documented by previous workers. The shock petrogenesis of RKPA80259 reflects the extensive impact processing of the enstatite chondrite parent bodies relative to those of other chondrite types. 相似文献