首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   164篇
  免费   2篇
测绘学   1篇
大气科学   5篇
地球物理   17篇
地质学   47篇
海洋学   6篇
天文学   86篇
自然地理   4篇
  2020年   1篇
  2018年   1篇
  2017年   1篇
  2015年   2篇
  2014年   2篇
  2013年   3篇
  2012年   1篇
  2011年   2篇
  2010年   4篇
  2009年   5篇
  2008年   2篇
  2007年   2篇
  2006年   4篇
  2005年   4篇
  2004年   4篇
  2003年   3篇
  2002年   3篇
  2001年   3篇
  2000年   3篇
  1997年   1篇
  1996年   3篇
  1995年   6篇
  1994年   4篇
  1993年   5篇
  1992年   2篇
  1991年   4篇
  1990年   5篇
  1989年   1篇
  1988年   4篇
  1987年   3篇
  1986年   4篇
  1985年   3篇
  1984年   3篇
  1983年   6篇
  1982年   3篇
  1981年   11篇
  1980年   6篇
  1979年   2篇
  1978年   4篇
  1977年   5篇
  1976年   4篇
  1975年   2篇
  1974年   6篇
  1973年   5篇
  1972年   5篇
  1971年   4篇
  1970年   3篇
  1965年   1篇
  1963年   1篇
排序方式: 共有166条查询结果,搜索用时 15 毫秒
11.
The Abee E4 enstatite chondrite breccia consists of clasts (many rimmed by metallic Fe, Ni), dark inclusions and matrix. The clasts and matrix were well equilibrated by thermal metamorphism, as evidenced by uniform mineral compositions, recrystallized chondrules, low MnO content of enstatite and high abundance of orthoenstatite. The clasts acquired their metal-rich rims prior to this metamorphic episode. The occurrence in Abee of relatively unmetamorphosed dark inclusions, clasts with nearly random magnetic orientations and a matrix with a uniform magnetic orientation [18,19] indicates that clast and matrix metamorphism occurred prior to the agglomeration of the breccia.The dark inclusions are an unusual kind of enstatite chondritic material, distinguished from the clasts and matrix by their relative enrichments in REE [21–23], low relative abundances of kamacite, total metallic Fe, Ni and silica, lower niningerite/(total sulfide) ratios, high relative abundances of oldhamite and martensite, smaller euhedral enstatite, more heterogeneous enstatite and metallic Fe, Ni, more calcic enstatite and more nickeliferous schreibersite.We propose the following model for the petrogenesis of the Abee breccia: The maximum metamorphic temperature of breccia parent material was?- 840°C (the minimum temperature of formation of Abee niningerite) and perhaps near 950–1000°C (the Fe-Ni-S eutectic temperature). Euhedral enstatite crystals in metallic Fe, Ni- and sulfide-rich areas grew at these metamorphic temperatures into pliable metal and sulfide. Breccia parent material was impact-excavated from depth, admixed with dark inclusions and rapidly cooled (700 to 200°C in about 2 hours) [15]. During this cooling, clast and matrix material acquired thermal remanent magnetization. Random conglomeration of clasts and unconsolidated matrix materials caused the clasts to have random magnetic orientations and the matrix areas to have net magnetic intensities of zero (due to the cancellation of numerous randomly oriented magnetic vectors of equal intensity in the matrix). A subsequent ambient magnetic field imparted a uniform net magnetic orientation to the matrix and caused the magnetic orientations of the clasts to be somewhat less random. The Abee breccia was later consolidated, possibly by shock or by shallow burial and very long-period/low-temperature (< 215°C) metamorphism.  相似文献   
12.
We studied the fine-grained matrices (< 150 μm) of 14 gas-rich ordinary chondrite regolith breccias in an attempt to decipher the nature of the lithification process that converted loose regolith material into consolidated breccias. We find that there is a continuous gradation in matrix textures from nearly completely clastic (class A) to highly cemented (class C) breccias in which the remaining clasts are completely surrounded by interstitial, shock-melted material. We conclude that this interstitial material formed by shock melting in the porous regolith. In general, the abundances of solar-wind-implanted 4He and 20Ne are inversely correlated with the abundance of interstitial, shock-melted, feldspathic material. Chondrites with the highest abundance of interstitial, melted material (class C) experienced the highest shock pressures and temperatures and suffered the most extensive degassing. It is this interstitial, feldspathic melt that lithifies and cements the breccias together; those breccias with very little interstitial melt (class A) are the most porous and least consolidated.  相似文献   
13.
Bulk compositions of igneous and microbreccia lithic fragments, glasses, and chondrules from Luna 16 fines as well as compositions of minerals in basaltic lithic fragments were determined with the electron microprobe. Igneous lithic fragments and glasses are divided into two groups, the anorthositic-noritic-troctolitic (hereafter referred to as ANT) and basaltic groups. Chondrules are always of ANT composition and microbreccia lithic fragments are divided into groups 1 and 2. The conclusions reached may be summarized as follows: (1) Luna 16 fines are more similar in composition to Apollo 11 than to Apollo 12 and 14 materials (e.g. Apollo 11 igneous lithic fragments and glasses fall into similar ANT and basaltic groups; abundant norites in Luna 16 and Apollo 11 are not KREEP as in Apollo 12 and 14; Luna 16 basaltic lithic fragments may represent high-K and low-K suites as is the case for Apollo 11; rare colorless to greenish, FeO-rich and TiO2-poor glasses were found in both Apollo 11 and Luna 16; Luna 16 spinels are similar to Apollo 11 spinels but unlike those from Apollo 12). (2) No difference was noted in the composition of lithic fragments, glasses and chondrules from Luna 16 core tube layers A and D. (3) Microbreccia lithic fragments of group 1 originated locally by mixing of high proportions of basaltic with small proportions of ANT materials. (4) Glasses are the compositional analogs to the lithic fragments and not to the microbreccias; most glasses were produced directly from igneous rocks. (5) Glasses show partial loss of Na and K due to vaporization in the vitrification process. (6) Luna 16 chondrules have ANT but not basaltic composition. It is suggested that either liquid droplets of ANT composition are more apt to nucleate from the supercooled state; or basaltic droplets have largely been formed in small and ANT droplets in large impact events (in the latter case, probability for homogeneous and inhomogeneous nucleation is larger. (7) No evidence for ferric iron and water-bearing minerals was found. (8) Occurrence of a great variety of igneous rocks in Luna 16 samples (anorthosite, noritic anorthosite, anorthositic norite, olivine norite, troctolite, and basalt) confirm our earlier conclusion that large-scale melting or partial melting to considerable depth and extensive igneous differentiation must have occurred on the moon.  相似文献   
14.
Approximately 100 glasses and 52 lithic fragments from Apollo 11 lunar fines and microbreccias were analyzed with the electron microprobe. Ranges in bulk composition of lithic fragments are considerably outside the precision (<±1%) and accuracy (±2–5%) of the broad electron beam technique. Results of this study may be summarized as follows: i) A large variety of rock types different from the hand specimens (basalt) were found among the lithic fragments, namely anorthosites, troctolitic and noritic anorthosites, troctolites, and norites (different from Apollo 12 norites). ii) In analogy to the hand specimens, the basaltic lithic fragments may be subdivided into low-K and high-K groups, both of which extend considerably in composition beyond the hand specimens. iii) Glasses were divided into 6 groups: Group 1 are the compositional analogs of the anorthositic-troctolitic lithic fragments and were apparently formed in single-stage impact events directly from parent anorthosites and troctolites. iv) Group 2 glasses are identical in composition to Apollo 12 KREEP glass and noritic lithic fragments, but have no counterparts in our Apollo 11 lithic fragment suite. Occurrence of KREEP in Apollo 11,12, and 14 samples is indicative of its relatively high abundance and suggests that the lunar crust is less depleted in elements that are common in KREEP (e.g. K, rare earths, P) than was originally thought on the basis of Apollo 11 basalt studies. v) Group 3 glasses are the compositional analogs of the basaltic lithic fragments, but low-K and high-K glasses cannot be distinguished because of loss of K (and Na, P) by volatilization in the vitrification process. vi) Group 4 glasses have no compositional analogs among the lithic fragments and were probably derived from as yet unknown Fe-rich, moderately Ti-rich, Mg-poor basalts. vii) Group 5 (low Ti-high Mg peridotite equivalent) and 6 (ilmenite peridotite equivalent) glasses have no counterparts among the Apollo 11 lithic fragments, but rock equivalents to group 5 glasses were found in Apollo 12 samples. Group 6 glasses are abundant, have narrow compositional ranges, and are thought to be the products of impact melting of an as yet unrecognized ultramafic rock type. iix) The great variety of igneous rocks (e.g. anorthosites, troctolites, norites, basalts, peridotites) suggests that large scale melting or partial melting to considerable depth must have occurred on the moon.  相似文献   
15.
Small gabbroic dikes of high TiO2 content transect massive hawaiite in the Kaena Quarry, Waianae Range, Oahu. One dike studied consists of two rock types: (a) border zone alkali gabbro of high titanomagnetite and titanaugite content and, (b) interior mugearite that contains iron-rich pyroxenes and K-feldspar. The dike probably formed as an in situ latestage segregation enriched in TiO2, SiO2, and alkalis.  相似文献   
16.
17.
A 250-μm fragment in the Luna 20 fines has a very fine-grained “igneous” texture and has the composition (wt.%): SiO2, 41.1; TiO2, 0.35; Al2O3, 27.2; Cr2O3, 0.14; FeO, 4.2; MnO, 0.06; MgO, 8.5; CaO, 17.8; Na2O, 0.05; and K2O < 0.02. It contains ~ 65% plagioclase An99–100, ~ 15% olivine Fo90, ~ 2% Mg-Al spinel and the remainder an unusual interstitial phase with composition SiO2, 34.8; TiO2, 1.78; Al2O3, 18.3; Cr2O3, 0.04; FeO, 14.1; MnO, 0.22; MgO, 5.0; CaO, 24.1; Na2O, 0.34; K2O < 0.02. This fragment probably represents a portion of a normal highland rock (anorthositic norite) which was heated to a very high temperature by impact, lost volatiles including SiO2, and then partially crystallized. The observed phases and their inferred crystallization sequence are consistent with experimental results in the system CaOMgOAl2O3SiO2 (Schairer and Yoder, 1969), assuming the unusual phase to be a residual glass. This type of internal fractionation, leading to silica depletion in the residuum, is different from that normally observed in lunar rocks and is attributed to slightly lower bulk SiO2 resulting from vapor fractionation due to impact (which also results in lower Na2O and other volatiles). Because differentiation of the type shown by this fragment is rare in lunar materials, we infer that such major-element vapor fractionation is uncommon on the surface of the moon. The experimental CaOMgOAl2O3SiO2 phase relations also have a bearing on the lunar model proposed by D.L. Anderson in 1973: his “refractory” original lunar composition would differentiate to produce silica deficient liquids, like the unusual phase in our fragment, rather than the normal lunar crustal rocks.  相似文献   
18.
One hundred and seventy-six oxide mineral grains in the Luna 20 samples were analyzed by electron microprobe. Spinel is the most abundant oxide, occurring in troctolite fragments. Next most abundant is ilmenite, which occurs in all rock types except those containing spinel. Chromite also occurs in all rock types except those containing spinel. Minor amounts of ulvöspinel, armalcolite, zirkelite, baddeleyite and an unidentified TiO2-rich phase were also found.Spinel grains are predominantly spinel-hercynite solid solutions, commonly with very minor chromite. The Fe(Fe + Mg) ratio is generally lower than in spinel from Apollo 14 rocks. Chromites in non-mare rocks are similar to those from mare rocks. Ilmenite of mare origin is Mg-poor and Zr-rich compared to non-mare ilmenite; these elements may therefore be useful in determining the origin of ilmenite grains.Phase equilibria considerations suggest that spinel troctolite crystallized from a melt high in alumina; a likely candidate is the high-alumina basalt of Prinzet al. (1973a).Sub-micron wide rods of metallic Fe occur in plagioclase grains and may have formed by sub-solidus reduction processes.  相似文献   
19.
The Beaver-Harrison, Utah chondrite (find July 24, 1979), a single, shock-veined stone of 925 grams, consists of major olivine (Fa25.0), low-Ca pyroxene (En77.3Fs21.1Wo1.6) and metallic nickel-iron; minor troilite and plagioclase (Ab82.6An11.1Or6.3), accessory high-Ca pyroxene (En47.0Fs8.5Wo44.5), chromite (Cm8.7Sp10.6Uv9.4Pc0.6Hc0.7), chlorapatite and whitlockite; and hydrous ferric oxide of terrestrial weathering origin. Mineral compositions indicate L-group classification, and homogeneity of minerals, highly recrystallized texture and presence of clear plagioclase suggest that the meteorite belongs to petrologic type 6.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号