首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   84篇
  免费   4篇
  国内免费   2篇
测绘学   1篇
大气科学   3篇
地球物理   24篇
地质学   13篇
海洋学   21篇
天文学   24篇
自然地理   4篇
  2022年   1篇
  2020年   2篇
  2018年   1篇
  2017年   3篇
  2016年   5篇
  2015年   2篇
  2014年   6篇
  2013年   2篇
  2012年   3篇
  2011年   2篇
  2010年   3篇
  2009年   7篇
  2008年   4篇
  2007年   5篇
  2006年   4篇
  2005年   5篇
  2004年   5篇
  2003年   3篇
  2002年   5篇
  2001年   1篇
  1999年   4篇
  1998年   1篇
  1996年   4篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1990年   1篇
  1986年   2篇
  1985年   1篇
  1982年   1篇
  1980年   2篇
  1976年   1篇
  1975年   1篇
排序方式: 共有90条查询结果,搜索用时 359 毫秒
71.
Tropical cyclones expose river basins to heavy rainfall and flooding, and cause substantial soil erosion and sediment transport. There is heightened interest in the effects of typhoon floods on river basins in northeast Japan, as the migration of radiocaesium‐bearing soils contaminated by the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident will affect future radiation levels. The five main catchments surrounding FDNPP are the Odaka, Ukedo, Maeda, Kuma and Tomioka basins, but little quantitative modelling has been undertaken to identify the sediment redistribution patterns and controlling processes across these basins. Here we address this issue and report catchment‐scale modelling of the five basins using the GETFLOWS simulation code. The three‐dimensional (3D) models of the basins incorporated details of the geology, soil type, land cover, and used data from meteorological records as inputs. The simulation results were checked against field monitoring data for water flow rates, suspended sediment concentrations and accumulated sediment erosion and deposition. The results show that the majority of annual sediment migration in the basins occurs over storm periods, thus making typhoons the main vectors for redistribution. The Ukedo and Tomioka basins are the most important basins in the region in terms of overall sediment transport, followed by the other three basins each with similar discharge amounts. Erosion is strongly correlated with the underlying geology and the surface topography in the study area. A low permeability Pliocene Dainenji formation in the coastal area causes high surface water flow rates and soil erosion. Conversely, erosion is lower in an area with high permeability granite basement rocks between the Hatagawa and Futaba faults in the centre of the study area. Land cover is also a factor controlling differences in erosion and transport rates between forested areas in the west of the study area and predominantly agricultural areas towards the east. The largest sediment depositions occur in the Ogaki and Takigawa Dams, at the confluence of the Takase and Ukedo Rivers, and at the Ukedo River mouth. Having clarified the sediment redistribution patterns and controlling processes, these results can assist the ongoing task of monitoring radioactive caesium redistribution within Fukushima Prefecture, and contribute to the design and implementation of measures to protect health and the environment. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
72.
An accurate prediction of ocean tides in southeast Alaska is developed using a regional, barotropic ocean model with a finite difference scheme. The model skill is verified by the observational tidal harmonics in southeast Alaska including Glacier Bay. The result is particularly improved in Glacier Bay compared to the previous model described by Foreman et al. (2000). The model bathymetry dominates the model skill. We re-estimate tidal energy dissipation in the Alaska Panhandle and suggest a value for tidal energy dissipation of 3.4 GW associated with the M2 constituent which is 1.5 times the estimation of Foreman et al. (2000). A large portion of the M2 energy budget entering through Chatham Strait is dissipated in the vicinity of Glacier Bay. Moreover, it is shown that the developed model has the potential to correct the ocean tide loading effect in geodetic data more efficiently than the model of Foreman et al. (2000), especially around Glacier Bay.  相似文献   
73.
We investigate the relation between coronal hole (CH) areas and solar wind speeds during 1995?–?2011 using the potential field (PF) model analysis of magnetograph observations and interplanetary scintillation (IPS) observations by the Institute for Space-Earth Environmental Research (formerly Solar-Terrestrial Environment Laboratory) of Nagoya University. We obtained a significant positive correlation between the CH areas (\(A\)) derived from the PF model calculations and solar wind speeds (\(V\)) derived from the IPS observations. The correlation coefficients between them are usually high, but they drop significantly in solar maxima. The slopes of the \(A\)?–?\(V\) relation are roughly constant except for the period around solar maximum, when flatter or steeper slopes are observed. The excursion of the correlation coefficients and slopes at solar maxima is ascribed partly to the effect of rapid structural changes in the coronal magnetic field and solar wind, and partly to the predominance of small CHs. It is also demonstrated that \(V\) is inversely related to the flux expansion factor (\(f\)) and that \(f\) is closely related to \(A^{-1/2}\); hence, \(V \propto A^{1/2}\). A better correlation coefficient is obtained from the \(A^{1/2}\)?–?\(V\) relation, and this fact is useful for improving space weather predictions. We compare the CH areas derived from the PF model calculations with He i 1083 nm observations and show that the PF model calculations provide reliable estimates of the CH area, particularly for large \(A\).  相似文献   
74.
Dust grains coagulate into larger aggregates in dense gas. This changes their size distribution and possibly affects the thermal evolution of star-forming clouds. We here investigate dust coagulation in collapsing pre-stellar cores with different metallicities by considering the thermal motions of grains. We show that coagulation does occur even at low metallicity  ∼10−6 Z  . However, we also find (i) that the H2 formation rate on dust grains is reduced only after the majority of H2 is formed and (ii) that the dust opacity is modified only after the core becomes optically thick. Therefore, we conclude that the effects of dust coagulation can safely be neglected in discussing the temperature evolution of the pre-stellar cores for any metallicity as long as the grain motions are thermal.  相似文献   
75.
76.
An axisymmetric model for the Crab nebula is constructed to examine the flow dynamics in the nebula. The model is based on that of Kennel & Coroniti, although we assume that the kinetic-energy-dominant wind is confined to an equatorial region. The evolution of the distribution function of the electron–positron plasma flowing out in the nebula is calculated. Given viewing angles, we reproduce an image of the nebula and compare it with the Chandra observation.
The reproduced image is not ring-like, but is rather 'lip-shaped'. It is found that the assumption of a toroidal field does not reproduce the Chandra image. We must assume that there is a disordered magnetic field with an amplitude as large as the mean toroidal field. In addition, the brightness contrast between the front and back sides of the ring cannot be reproduced if we assume that the magnetization parameter σ is as small as ∼10−3. The brightness profile along the semimajor axis of the torus is also examined. The non-dissipative, ideal-magnetohydrodynamic approximation in the nebula appears to break down.
We speculate that if the magnetic energy is released by some process that produces a turbulent field in the nebula flow and causes heating and acceleration – for example, by magnetic reconnection – then the present difficulties may be resolved (i.e. we can reproduce a ring image and a higher brightness contrast). Thus, the magnetization parameter σ can be larger than previously expected.  相似文献   
77.
We investigate the formation by accretion of massive primordial protostars in the range 10 to 300 M . The high accretion rate used in the models (M = 4.4 x 10-3 M yr-1) causes the structure and evolution to differ significantly from those of both present-day protostars and primordial zero-age main sequence stars. The stellar surface is not visible throughout most of the main accretion phase, since a photosphere is formed in the in falling envelope. Significant nuclear burning does not take place until a protostellar mass of about 80 M . As the interior luminosity approaches the Eddington luminosity, the protostellar radius rapidly expands owing to the radiation pressure. Eventually, a final swelling occurs when the stellar mass reaches about 300 M . This expansion is likely to signal the end of the main accretion phase, thus setting an upper limit to the protostellar mass formed in these conditions. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   
78.
We construct a spacecraft transfer with low cost and moderate flight time from the Earth to the Moon. The motion of the spacecraft is modeled by the planar circular restricted three-body problem including a perturbation due to the solar gravitation. Our approach is to reduce computation of optimal transfers to a non-linear boundary value problem. Using a computer software called AUTO, we solve it and continue its solutions numerically to obtain the optimal transfers. Our result also shows that the use of the solar gravitation can further lower the transfer cost drastically.  相似文献   
79.
Thirteen synoptic maps of expansion rate of the coronal magnetic field (CMF; RBR) calculated by the so-called ‘potential model’ are constructed for 13 Carrington rotations from the maximum phase of solar activity cycle 22 through the maximum phase of cycle 23. Similar 13 synoptic maps of solar wind speed (SWS) estimated by interplanetary scintillation observations are constructed for the same 13 Carrington rotations as the ones for the RBR. The correlation diagrams between the RBR and the SWS are plotted with the data of these 13 synoptic maps. It is found that the correlation is negative and high in this time period. It is further found that the linear correlation is improved if the data are classified into two groups by the magnitude of radial component of photospheric magnetic field, |Bphor|; group 1, 0.0 G ≦ |Brpho| < 17.8 G and group 2, 17.8 G ≦ |Brpho|. There exists a strong negative correlation between the RBR and the SWS for the group 1 in contrast with a weak negative correlation for the group 2. Group 1 has a double peak in the density distribution of data points in the correlation diagram; a sharp peak for high-speed solar wind and a low peak for low-speed solar wind. These two peaks are located just on the axis of maximum variance of data points in the correlation diagram. This result suggests that the solar wind consists of two major components and both the high-speed and the low-speed winds emanating from weak photospheric magnetic regions are accelerated by the same mechanism in the course of solar activity cycle. It is also pointed out that the SWS can be estimated by the RBR of group 1 with an empirical formula obtained in this paper during the entire solar activity cycle.  相似文献   
80.
Deep flows on the slope inshore of the Kuril-Kamchatka Trench southeast off Cape Erimo, Hokkaido were observed for about five years from June 1989 to March 1995, using a mooring system with two current meters. In 1991 and 1993 directionally stable southwestward flows were observed at the upper layer (1000 m). These appear to be typical of the Oyashio because the characteristics of the flows were high mean kinetic energy, low eddy energy and high stability. However, the magnitudes of other mean flows at the upper layer, except for 1991 and 1993, were less than their standard deviations. This suggests that the Oyashio was observed for only a limited period of time. On the other hand, at the lower layer (3000 m) the magnitudes of the mean flows for 10–11 months were 1–3 cm s-1 and ellipses of their eddy kinetic energy were extremely flattened in the direction of the local isobath. The directions of the mean flows in 1990, 1991 and 1993 were southwestward along the local isobath. The relationships between the upper and the lower flows are discussed in terms of monthly change of kinetic energy, since the low-frequency fluctuations longer than 30-day are predominant from the eddy kinetic energy spectra. The results show that there are cases when the kinetic energy of the monthly mean flows at the lower layers are larger than those at the upper layers. This suggests the possibility that the lower flows are in part a southward deep western boundary current.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号