首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   84篇
  免费   4篇
  国内免费   2篇
测绘学   1篇
大气科学   3篇
地球物理   24篇
地质学   13篇
海洋学   21篇
天文学   24篇
自然地理   4篇
  2022年   1篇
  2020年   2篇
  2018年   1篇
  2017年   3篇
  2016年   5篇
  2015年   2篇
  2014年   6篇
  2013年   2篇
  2012年   3篇
  2011年   2篇
  2010年   3篇
  2009年   7篇
  2008年   4篇
  2007年   5篇
  2006年   4篇
  2005年   5篇
  2004年   5篇
  2003年   3篇
  2002年   5篇
  2001年   1篇
  1999年   4篇
  1998年   1篇
  1996年   4篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1990年   1篇
  1986年   2篇
  1985年   1篇
  1982年   1篇
  1980年   2篇
  1976年   1篇
  1975年   1篇
排序方式: 共有90条查询结果,搜索用时 31 毫秒
11.
The yield level of an insulator is one of the important parameters which are related to responses and absorbing energy under seismic input energy in isolated structures. The purpose of this paper is to determine the optimal ratios of yield force of the isolator (Qy) to the total weight of the structures (W). To obtain the optimal ratio, 1044 two-degree-of-freedom isolated bridge models, which have bilinear isolators, were selected. These 2-DOF isolated bridge models with superstructure isolation can consider pier flexibility and various parameters of the isolator. Two formulas for determining the optimal yield ratio are proposed and compared with the previous researches. RAE (the ratio of absorbed energy by the isolator to the total input energy) is related directly to structural responses, and Optimal Yield Ratio (OYR), defined as a yield ratio at maximum RAE, can be obtained from the relationship between RAE and Qy/W. Here, we found that RAE is a reliable factor to evaluate OYR, and it is proportional to earthquake amplitudes under the same kinds of earthquake loadings. Using the proposed formulas, OYR is determined and the optimal yield force of the isolator can be obtained easily and reliably at a seismic isolation design stage. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   
12.
Available Argo profiling float data from 2002 to 2011 were analyzed to examine the effect of the Kuroshio Extension (KE) current system variability on the formation of the Central Mode Water. Just north of the upstream portion of the KE at 140–152°E, formation of a lighter variety of the Central Mode Water in winter was active during the unstable period of the upstream KE in 2006–2009 and was reduced when the upstream KE was in the stable period of 2002–2005 and 2010–2011. This decadal formation variability is out of phase with that of the Subtropical Mode Water just south of the KE.  相似文献   
13.
We summarize chemical characteristics of chromian spinels from ultramafic to mafic plutonic rocks (lherzolites, harzburgites, dunites, wehrlites, troctolites, olivine gabbros) with regard to three tectonic settings (mid‐ocean ridge, arc, oceanic hotspot). The chemical range of spinels is distinguishable between the three settings in terms of Cr# (= Cr/(Cr + Al) atomic ratio) and Ti content. The relationships are almost parallel with those of chromian spinels in volcanic rocks, but the Ti content is slightly lower in plutonics than in volcanics at a given tectonic environment. The Cr# of spinels in plutonic rocks is highly diverse; its ranges overlap between the three settings, but extend to higher values (up to 0.8) in arc and oceanic hotspot environments. The Ti content of spinels in plutonics increases, for a given lithology, from the arc to oceanic hotspot settings by mid‐ocean ridge on average. This chemical diversity is consistent with that of erupted magmas from the three settings. If we systematically know the chemistry of chromian spinels from a series of plutonic rocks, we can estimate their tectonic environments of formation. The spinel chemistry is especially useful in dunitic rocks, in which chromian spinel is the only discriminating mineral. Applying this, discordant dunites cutting mantle peridotites were possibly precipitated from arc‐related magmas in the Oman ophiolite, and from an intraplate tholeiite in the Lizard ophiolite, Cornwall.  相似文献   
14.
Peridotites exposed in the Yugu area in the Gyeonggi Massif, South Korea, near the boundary with the Okcheon Belt, exhibit mylonitic to strongly porphyroclastic textures, and are mostly spinel lherzolites. Subordinate dunites, harzburgites, and websterites are associated with the lherzolites. Amphiboles, often zoned from hornblende in the core to tremolite in the rim, are found only as neoblasts. Porphyroclasts have recorded equilibrium temperatures of about 1000°C, whereas neoblasts denote lower temperatures, about 800°C. Olivines are Fo90–91 in lherzolites and Fo91 in a dunite and a harzburgite. The Cr# (= Cr/(Cr + Al) atomic ratio) of spinels varies together with the Fo of olivines, being from 0.1 to 0.3 in lherzolites and around 0.5 in the dunite and harzburgite. The Na2O content of clinopyroxene porphyroclasts is relatively low, around 0.3 to 0.5 wt% in the most fertile lherzolite. The Yugu peridotites are similar in porphyroclast mineral chemistry not to continental spinel peridotites but to sub‐arc or abyssal peridotites. Textural and mineralogical characteristics indicate the successive cooling with hydration from the upper mantle to crustal conditions for the Yugu peridotites. Almost all clinopyroxenes and amphiboles show the same U‐shaped rare earth element (REE) patterns although the level is up to ten times higher for the latter. The hydration was associated with enrichment in light REE, resulting from either a slab‐derived fluid or a fluid circulating in the crust. The mantle‐wedge or abyssal peridotites were emplaced into the continental crust as the Yugu peridotite body during collision of continents to form a high‐pressure metamorphic belt in the Gyeonggi Massif. The peridotites from the Gyeonggi Massif exhibit lower‐pressure equilibration than peridotites, with or without garnets, from the Dabie–Sulu Collision Belt, China, which is possibly a westward extension of the Gyeonggi Massif.  相似文献   
15.
The plasma instability process during internal gravity wave propagation through the ionospheric E region is considered. The growth rate of the instability has been found and it has been shown that it depends on perturbation wavelength, gravity wave parameters and direction of propagation. The conditions for the instability are favorable when the vorticity of the associated neutral motion becomes antiparallel to the geomagnetic field. In the proposed instability mechanism plasma irregularities could seed the large-scale sporadic E layer structuring because they are generated in situ as a part of the same neutral wind structure that serves to initiate the formation of the layer.  相似文献   
16.
From the moored buoy observation at \(33.9^{\circ }\)N, \(144.9^{\circ }\)E south of the Kuroshio Extension (KE), we obtained Eulerian time series of dissolved oxygen concentration (DO) at 200, 400, and 600 m depths from June 2012 to March 2013. We observed ventilation by meso- and submesoscale processes that transport water southward across the KE jet. First, the cyclonic mesoscale eddy in June 2012 substantially depressed DO at depths of 400 and 600 m but maintained DO at 200 m, suggesting near-surface lateral transport of high-DO water derived from the north of the KE. Second, subduction of high-DO (>230 \({\upmu }\)mol kg\(^{-1}\)) water to a depth of 600 m was observed from early February to March 2013, associated with a mesoscale/submesoscale meandering of the KE jet. In mid-March 2013, shipboard hydrographic data were collected where the water mass at the mooring site would be advected by the eastward current on the southern flank of the KE. Based on these data, the subduction event was identified as an intrusion of an anomalously thick water mass from approximately 400–900 dbar. Ventilation of the subtropical mode water at a depth of 200 m around a subsurface DO maximum layer was detected as a rapid rise in DO in January 2013. This occurred after a significant seasonal decrease in DO at a rate of \(-0.130 \pm 0.007\) \({\upmu }\)mol kg\(^{-1}\) day\(^{-1}\) from July to December 2012.  相似文献   
17.
Seasonal changes in mesozooplankton biomass and their community structures were observed at time-series stations K2 (subarctic) and S1 (subtropical) in the western North Pacific Ocean. At K2, the maximum biomass was observed during the spring when primary productivity was still low. The annual mean biomasses in the euphotic and 200- to 1000-m layers were 1.39 (day) and 2.49 (night) g C m?2 and 4.00 (day) and 3.63 (night) g C m?2, respectively. Mesozooplankton vertical distribution was bimodal and mesopelagic peak was observed in a 200- to 300-m layer; it mainly comprised dormant copepods. Copepods predominated in most sampling layers, but euphausiids were dominant at the surface during the night. At S1, the maximum biomass was observed during the spring and the peak timing of biomass followed those of chlorophyll a and primary productivity. The annual mean biomasses in the euphotic and 200- to 1000-m layers were 0.10 (day) and 0.21 (night) g C m?2 and 0.47 (day) and 0.26 (night) g C m?2, respectively. Copepods were dominant in most sampling layers, but their mean proportion was lower than that in K2. Mesozooplankton community characteristics at both sites were compared with those at other time-series stations in the North Pacific and with each other. The annual mean primary productivities and sinking POC fluxes were equivalent at both sites; however, mesozooplankton biomasses were higher at K2 than at S1. The difference of biomasses was probably caused by differences of individual carbon losses, population turnover rates, and trophic structures of communities between the two sites.  相似文献   
18.
Flow patterns and positions of the Kuroshio in the vicinity of the Izu Ridge are clarified by analyzing hydrographic observations and daily mean sea levels at Hachijo-jima, Miyake-jima and Oshima in the period from 1964 to 1981.Correlations are calculated between differences of dynamic depth anomaly at the surface refered to 1,000 db and differences of daily mean sea level between the two islands. The datum line of the tidal station at Hachijo-jima is about 90 cm higher than that at Miyake-jima, and about 20 cm higher than that at Oshima. A clear correlation is found between the cross-section transport of the Kuroshio and the mean sea-level difference between Hachijo-jima and Miyake-jima. The sea-level difference of the flow pattern without meander off Enshu-nada (type N) tends to be larger than that of the flow patterns with meander (type A and type B). This seems to indicate that the volume transport of the Kuroshio in the meandering period is smaller than that during the straight path period. Large sudden increases or decreases in the mean sea-level difference occur when the flow pattern changes and the Kuroshio axis shifts. The frequency of occurrence of quiet periods in the sea-level difference reflect the flow pattern of the Kuroshio.  相似文献   
19.
徐星凯 《大气科学进展》2009,26(6):1253-1261
Soil acidification via acid precipitation is recognized to have detrimental impacts on forest ecosystems, which is in part associated with the function of ethylene released from the soil. However, the impacts of acidification on the cycling of ethylene in forest soils have not been fully taken into consideration in global change studies. Forest topsoils (0--5 cm) under four temperate forest stands were sampled to study the effects of a pH change on the emissions of ethylene and carbon dioxide from the soils and concentrations of dissolved organic carbon (DOC) released into the soils. Increasing acidification or alkalinization of forest soils could increase concentrations of DOC released into the soils under anoxic and oxic conditions. The ethylene emission from these forest topsoils could significantly increase with a decreasing pH, when the soils were acidified experimentally to a pH<4.0, and it increased with an increasing concentration of DOC released into the soils, which was different from the carbon dioxide emission from the soils. Hence, the short-term stimulating responses of ethylene emission to a decreasing pH in such forest soils resulted from the increase in the DOC concentration due to acidification rather than carbon mineralization. The results would promote one to study the effects of soil acidification on the cycling of ethylene under different forest stands, particularly under degraded forest stands with heavy acid depositions.  相似文献   
20.
Zircons in ultra-high-temperature (UHT) metamorphosed paragneisses from Mt. Riiser-Larsen in the Napier Complex, East Antarctica, were dated by using ion microprobe (SHRIMP) and electron microprobe (EMP). Both SHRIMP and EMP analyses yield consistent 2520–2460 Ma age populations for garnet–orthopyroxene-bearing paragneiss and leucosomes enclosed within. The peak UHT event was dated at 2480 Ma by SHRIMP analyses on metamorphic zircons from the garnet–orthopyroxene paragneiss and those on magmatic zircons from the leucosomes which are interpreted to be formed at syn-UHT. As obtained by SHRIMP, the UHT metamorphic event was terminated no later than 2460 Ma. Minor 2520-Ma SHRIMP age suggests either the onset of prograde metamorphism or another high-grade metamorphic event unrelated to the UHT. EMP analyses on metamorphic zircons from sapphirine–quartz and osumilite-bearing magnesian paragneisses give c. 2500–2450 Ma ages. Inherited igneous zircon cores of the magnesian paragneisses yield relatively scattered EMP ages ranging over c. 3000–2650 Ma, suggesting that igneous materials of these ages sourced the protoliths of the paragneisses and that they were deposited during the interval c. 2650–2520 Ma.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号