首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   1篇
地球物理   2篇
地质学   4篇
海洋学   12篇
天文学   5篇
  2017年   1篇
  2014年   1篇
  2012年   1篇
  2011年   1篇
  2008年   1篇
  2007年   1篇
  2006年   3篇
  2005年   3篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
  2001年   2篇
  2000年   2篇
  1996年   1篇
  1988年   1篇
排序方式: 共有23条查询结果,搜索用时 15 毫秒
21.
To understand the effects of temperature, pH and mechanical stress on the pressure dissolution of quartz, two experiments using monocrystalline quartz samples were conducted. The first was a closed-fluid experiment to investigate the effect of pH, and the second was a flow-through experiment to investigate stress and temperature effects. To initiate the pressure dissolution, a pair of samples was immersed in a solution with a prescribed pH. The samples were stressed mechanically by pressing one sample against the other. In the closed-fluid experiments, the pH of the solution was fixed to 7, 9, 11 and 13, the applied stress was approximately 200 MPa and temperature 25°C. The flow-through experiments were conducted at three different temperatures (35, 50 and 75°C) at the same pH 11.7. The value of the applied stress was 7.32, 13.72, 21.42 or 25.27 MPa. During each of these dissolution tests, the solution was regularly sampled and analyzed by an Inductively Coupled Plasma-Atomic Emission Spectrometry technique to measure Si-concentration. With the measured Si-concentration, a dissolution rate constant was computed the different pH, stress and temperature conditions. The rate constant is proportional to pH, stress and temperature, as indicated in the literature. It should be noted that the rate constant for the highest stress (200 MPa) was considerably greater than for the other cases. In addition, island-channel patterns characterized by micro-cracks a few nanometers in length were seen on the dissolved parts of the samples. The findings and the measured data in this paper may be useful for the future development of theoretical models for pressure dissolution and its validation.  相似文献   
22.
23.
This paper reports on the Sub-keV Atom Reflecting Analyzer (SARA) experiment that will be flown on the first Indian lunar mission Chandrayaan-1. The SARA is a low energy neutral atom (LENA) imaging mass spectrometer, which will perform remote sensing of the lunar surface via detection of neutral atoms in the energy range from 10 eV to 3 keV from a 100km polar orbit. In this report we present the basic design of the SARA experiment and discuss various scientific issues that will be addressed. The SARA instrument consists of three major subsystems: a LENA sensor (CENA), a solar wind monitor (SWIM), and a digital processing unit (DPU). SARA will be used to image the solar wind-surface interaction to study primarily the surface composition and surface magnetic anomalies and associated mini-magnetospheres. Studies of lunar exosphere sources and space weathering on the Moon will also be attempted. SARA is the first LENA imaging mass spectrometer of its kind to be flown on a space mission. A replica of SARA is planned to fly to Mercury onboard the BepiColombo mission.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号