首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   325篇
  免费   8篇
  国内免费   9篇
测绘学   5篇
大气科学   14篇
地球物理   107篇
地质学   87篇
海洋学   68篇
天文学   30篇
综合类   7篇
自然地理   24篇
  2021年   2篇
  2020年   3篇
  2018年   7篇
  2017年   4篇
  2016年   17篇
  2015年   13篇
  2014年   8篇
  2013年   15篇
  2012年   12篇
  2011年   14篇
  2010年   10篇
  2009年   15篇
  2008年   19篇
  2007年   14篇
  2006年   12篇
  2005年   15篇
  2004年   6篇
  2003年   8篇
  2002年   10篇
  2001年   12篇
  2000年   9篇
  1999年   9篇
  1998年   6篇
  1997年   5篇
  1996年   7篇
  1995年   4篇
  1994年   4篇
  1993年   3篇
  1992年   6篇
  1990年   2篇
  1989年   4篇
  1988年   3篇
  1987年   6篇
  1986年   7篇
  1985年   8篇
  1984年   2篇
  1983年   2篇
  1982年   4篇
  1981年   3篇
  1980年   2篇
  1979年   4篇
  1978年   3篇
  1977年   4篇
  1976年   3篇
  1975年   4篇
  1973年   4篇
  1972年   2篇
  1971年   2篇
  1970年   1篇
  1965年   1篇
排序方式: 共有342条查询结果,搜索用时 31 毫秒
71.
The 2B/X2.8 double-ribbon flare of 30 March, 1982 is investigated using H, white light, X-rays, and microwaves. The X-ray burst seems to consist of two components, i.e., an impulsive component showing a long chain of peaks and a thermal component (T 2 × 107 K).In the early phase, the source images for the impulsive component were available simultaneously at soft (7–14 keV) and hard (20–40 keV) X-rays. Both sources are elongated along a neutral line. The core of the source for the hard X-rays is located at one end which seems to be a footpoint (or a leg) of a loop or arcade, while the core for the soft X-rays is located at the center of the elongated source which would be the center of the loop. The core for the hard X-rays shifted to this center in the main and later phase, accompanied by decrease in the source size in the later phase.A peak of one-directional intensity distribution at 35 GHz always lies on the core of the hard X-ray source, showing a shift of the position synchronous with the hard X-ray core. This may imply a common source for the radio waves and the hard X-rays.The source of the thermal component observed at the soft X-rays (7–14 keV) after the early phase covers a whole H patches. This may imply a physical relation between the thermal X-ray loops and the H brightening.  相似文献   
72.
In the present article, we introduce a high resolution sea surface temperature(SST) product generated daily by Korea Institute of Ocean Science and Technology(KIOST). The SST product is comprised of four sets of data including eight-hour and daily average SST data of 1 km resolution, and is based on the four infrared(IR) satellite SST data acquired by advanced very high resolution radiometer(AVHRR), Moderate Resolution Imaging Spectroradiometer(MODIS), Multifunctional Transport Satellites-2(MTSAT-2) Imager and Meteorological Imager(MI), two microwave radiometer SSTs acquired by Advanced Microwave Scanning Radiometer 2(AMSR2), and Wind SAT with in-situ temperature data. These input satellite and in-situ SST data are merged by using the optimal interpolation(OI) algorithm. The root-mean-square-errors(RMSEs) of satellite and in-situ data are used as a weighting value in the OI algorithm. As a pilot product, four SST data sets were generated daily from January to December 2013. In the comparison between the SSTs measured by moored buoys and the daily mean KIOST SSTs, the estimated RMSE was 0.71°C and the bias value was –0.08°C. The largest RMSE and bias were 0.86 and –0.26°C respectively, observed at a buoy site in the boundary region of warm and cold waters with increased physical variability in the Sea of Japan/East Sea. Other site near the coasts shows a lower RMSE value of 0.60°C than those at the open waters. To investigate the spatial distributions of SST, the Group for High Resolution Sea Surface Temperature(GHRSST) product was used in the comparison of temperature gradients, and it was shown that the KIOST SST product represents well the water mass structures around the Korean Peninsula. The KIOST SST product generated from both satellite and buoy data is expected to make substantial contribution to the Korea Operational Oceanographic System(KOOS) as an input parameter for data assimilation.  相似文献   
73.
74.
75.
It is well known that sea-salt aerosols in particulate matter (PM) react with acids such as H2SO4 and HNO3 during transportation and thereby lose chloride ions (Cl-loss). The PM and fog were sampled concurrently at different altitudes in the Hachimantai mountain range, northern Japan. The PM and fog sampled at different altitudes had nearly identical properties for the ion components. However, the PM was in a Cl-depleted state (more than 80% of all samples), but the fog water was not in so Cl-depleted state (less than 29%). As a result, it could be explained that this phenomenon caused because the fog droplets took up the gaseous state HCl other than sea-salt PM. After all Cl- in the fog water recovered and was rather rich compared with the sea-salt or the PM by the uptake of the gaseous state HCl. Moreover, it was found that for PMcoarse(2.5 < D < 10), 86% of the acid (H2SO4 and HNO3) was consumed for Cl-loss reactions and/or for dissolution of Ca and Mg in soil particles.  相似文献   
76.
The Ohori deposit, one of the base metal deposits in the Green-Tuff region, NE Japan, is composed of two types of mineralization; a skarn-type (Kaninomata orebody) made by the replacement of the Miocene calcareous layer, and a vein-type (Nakanomata orebody). While the ore mineral assemblage of the deposit (chalcopyrite, pyrite, sphalerite and galena) has been known for being rather simple, some Pb-Bi-S minerals have been discovered for the first time in the present study. The minerals mainly occur in the chalcopyrite-rich ores of both orebodies. They essentially belong to the Pb-Bi-S system and contain Cu and Ag in minor amounts, which correspond to the lillianite–gustavite solid solution series (phases Z and X), cosalite, neyite, felbertalite, krupkaite and Bi-bearing galena. The chalcopyrite-rich (Bi-bearing) ores from both orebodies are richer in chalcopyrite, pyrite and chlorite, and have higher homogenization temperatures (>300°C) of fluid inclusions, and higher FeS contents in sphalerite compared to the Bi-free ores. In the Green-Tuff region, Bi-minerals have been reported from many base metal deposits. Most of these Bi-bearing ore deposits are referred to as xenothermal-type deposits, and are characterized by the following common features; composite mineralization of high- and low-temperatures in the shallower environments, and close relationships with the Tertiary granitic rocks. The whole mineralization at the Ohori deposit also has a similar xenothermal character because of the coexistence of high-temperature chalcopyrite-rich ores with Pb-Bi-S minerals, which were formed by the influence of the Tertiary granitic rocks at a shallow depth.  相似文献   
77.
Based on petrographical data, three types of greisen have been characterized at the western border of Água Boa pluton: siderophyllite–topaz–quartz greisen (greisen 1), fluorite–phengite–quartz greisen (greisen 2) and quartz–chlorite–phengite greisen (greisen 3). Episyenites were also identified.Two fluids of independent origin interacted with the same protolith – a hornblende-biotite alkali feldspar granite – and produced both the greisens and potassic episyenite: (1) an acid, low-salinity (4–12 wt.% NaCl eq.), F-rich, relatively hot (400–350 °C) reduced aqueous-carbonic fluid (CH4–H2O–NaCl–FeCl2 ± KCl), which by immiscibility gave rise to fluid IA (aqueous) and IC (carbonic); and (2) a lower salinity (2–4 wt.% NaCl eq.) and temperature (200–150 °C) aqueous fluid (H2O–NaCl), which was responsible for all dilution processes. Fluid 1 seems to have had a magmatic-hydrothermal origin, while fluid 2 is probably surface-derived (meteoric water?). An alkaline, F-poorer and diluted equivalent of fluid IA was interpreted to have caused the episyenitization of the granite host rock as well as the formation of phengite-rich greisen 3. The continuos interaction of this fluid with the potassic episyenite produced a moderate- to high-salinity (20–24 wt.% NaCl eq.), low-temperature (200–100 °C) fluid (H2O–NaCl–CaCl2 ± KCl), leading to the formation of chlorite-rich zone of greisen 3 and late silicification of potassic episyenite.In the greisen 1, decreasing F-activity and increasing oxygen fugacity, as the system cooled down, favored the formation of a topaz-rich inner zone, which grades into a siderophyllite-rich zone outwardly. Greisen 2 was formed under more oxidizing conditions by fluids poorer in F than those trapped in the siderophyllite-rich zone.The oxidation of aqueous-carbonic fluid took place at three distinct stages: (i) below the FMQ buffer; (ii) between the FMQ and NNO buffers; and (iii) above the NNO buffer.The dissolution cavities generated during the episyenitization process increased the permeability of the altered rocks, resulting in an increase of the fluid/rock ratios at the potassic episyenite and greisen 3 sites.All these fluids were trapped under pressure conditions of <1.0 kbar, representing shallow crustal levels and are consistent with those that have been estimated for the Pitinga tin–granites.The oxygen fugacity, F-activity gradients and salinity variations that occurred during the cooling of the hydrothermal system, in addition to differences in permeability, were important factors in the formation of distinct greisens. They not only controlled the fluid compositional changes, but also caused the cassiterite and sulfide precipitation at the greisen sites.  相似文献   
78.
79.
The Tochiyama landslide is one of several complex, deep-seated and large-scale landslides occurring in the Hokuriku Province in central Japan. The landslide is about 2 km long and about 500–1100 m wide; it occupies an area of approximately 150 ha and has a maximum depth of 60 m. The slide developed on a dip-slope structure, and is divisible into three layers in ascending order: older landslide debris and avalanche deposits, younger debris-avalanche deposits, and talus. The landslide complex is still active. A triangulation point on the upper part of the landslide shifted downhill by 3.3 m from 1907 to 1983, indicating an average rate of 4.3 cm/y. In 1991, the average rate of movement on the sliding surface was also 4.3 cm/y as measured by an automatic system with inclinometers installed in borehole No. 1–2. The rate measured for borehole No. 1–3, located 380 m upslope from No. 1–2, was over twice that of No. 1–2 for the same period; it has since accelerated to about 19 cm/y. Thus current movements on the basal sliding surface are inhomogeneous; the head of the slide complex is increasing the horizontal granular pressures on the lower part of the slide block.

On the basis of dating of two tephra layers and14C dating of carbonized wood intercalated within the landslide body, two stages of slide movement have been distinguished. The earlier occurred between about 46,000 to 25,000 years ago, and the latter occurred since 1361 A.D. The following sequence of events is inferred. During the middle Pleistocene, intense tectonic movements occurred in the Hokuriku Province, and as a consequence dip-slopes were developed in the Tochiyama landslide area. Low-angle fault planes (possibly representing slump features) and fracture zones then developed within flysch deposits underlying the landslide area, causing a reduction in shear strength. The erosion base level was lowered during the Würm glacial age, and due to severe erosion and incision of stream valleys, the surface slope angle rapidly increased, and toe resistance decreased. This combination of causes led to the development of a deep-seated primary landslide. As a result of an accumulation of younger deposits, regional uplift and further local erosion, stability of parts of the region decreased and led to landslide activity of a second stage. Reactivated and locally accelerating creep movements occur today and may forewarn of a stage of reactivated, hazardous rapid sliding, such as occurred with the adjacent and analogous Maseguchi landslide in 1947.  相似文献   

80.
Abstract Mélange units containing greenstones are common throughout the Cretaceous-Miocene Shimanto Supergroup in the Ryukyu Is and southwest Japan. Most greenstones in the accretionary complex originated in oceanic spreading ridges and seamounts, and they formed far from the convergent margin. Some mélange-like units in the supergroup, however, contain greenstones that were extruded upon and intruded into unconsolidated fine-grained terrigenous clastic sediments. It is inferred that eruption of the in situ greenstones resulted from igneous activity in the trench area. Geochemical signatures indicate that the greenstone protoliths were similar to mafic lavas generated at spreading ridges. Fossil ages of the strata containing in situ greenstones become younger over a distance of 1300 km eastward from Amami-Oshima (Cenomanian-Turonian) in the Ryukyu Is to central Japan (Late Maestrichtian-earliest Paleocene), implying that a site of igneous activity in the trench area migrated eastward along the Ryukyu Is and southwest Japan margin. Plate reconstructions of the northwest Pacific Ocean suggest the presence of the Kula-Pacific ridge near Late Cretaceous to early Paleogene Japan. In this context, it is suggested that the greenstones formed in response to Kula-Pacific ridge-forearc collision.
Ancient ridge-forearc collisions are best recognized by the presence of mid-ocean ridge basalt (MORB) extruded on sediments inferred to have accumulated in the trench area. Diachronous occurrences of the strata associated with these MORB in an orogenic belt are useful for documenting the ridge collision through time.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号