首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   132篇
  免费   5篇
  国内免费   2篇
测绘学   1篇
大气科学   1篇
地球物理   46篇
地质学   67篇
海洋学   16篇
天文学   5篇
自然地理   3篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   2篇
  2019年   3篇
  2018年   5篇
  2017年   6篇
  2016年   11篇
  2015年   1篇
  2014年   5篇
  2013年   6篇
  2012年   6篇
  2011年   6篇
  2010年   4篇
  2009年   7篇
  2008年   11篇
  2007年   7篇
  2006年   6篇
  2005年   3篇
  2004年   5篇
  2003年   8篇
  2002年   1篇
  2001年   6篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   3篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1979年   1篇
  1978年   1篇
  1975年   1篇
排序方式: 共有139条查询结果,搜索用时 140 毫秒
91.
http://dx.doi.org/10.1016/j.gsf.2016.07.005   总被引:1,自引:1,他引:0  
The Hadean history of Earth is shrouded in mystery and it is considered that the planet was born dry with no water or atmosphere. The Earth-Moon system had many features in common during the birth stage. Solidification of the dry magma ocean at 4.53 Ga generated primordial continents with komatiite. We speculate that the upper crust was composed of fractionated gabbros and the middle felsic crust by anorthosite at ca. 21 km depth boundary, underlain by meta-anorthosite (grossular + kyanite + quartz) down to 50–60 km in depth. The thickness of the mafic KREEP basalt in the lower crust, separating it from the underlying upper mantle is not well-constrained and might have been up to ca. 100–200 km depending on the degree of fractionation and gravitational stability versus surrounding mantle density. The primordial continents must have been composed of the final residue of dry magma ocean and enriched in several critical elements including Ca, Mg, Fe, Mn, P, K, and Cl which were exposed on the surface of the dry Earth. Around 190 million years after the solidification of the magma ocean, “ABEL bombardment” delivered volatiles including H2O, CO2, N2 as well as silicate components through the addition of icy asteroids. This event continued for 200 Myr with subordinate bombardments until 3.9 Ga, preparing the Earth for the prebiotic chemical evolution and as the cradle of first life. Due to vigorous convection arising from high mantle potential temperatures, the primordial continents disintegrated and were dragged down to the deep mantle, marking the onset of Hadean plate tectonics.  相似文献   
92.
Abstract The Isabela ophiolite, the Philippines, is characterized by a lherzolite‐dominant mantle section, which was probably formed beneath a slow‐spreading mid‐ocean ridge. Several podiform chromitites occur in the mantle section and grade into harzburgite to lherzolite. The chromitites show massive, nodular, layered and disseminated textures. Clinopyroxene (±orthopyroxene/amphibole) inclusions within chromian spinel (chromite hereafter) are commonly found in the massive‐type chromitites. Large chromitites are found in relatively depleted harzburgite hosts having high‐Cr? (Cr/(Cr + Al) atomic ratio = ~0.5) chromite. Light rare earth element (LREE) contents of clinopyroxenes in harzburgites near the chromitites are higher than those in lherzolite with low‐Cr? chromite, whereas heavy REE (HREE) contents of clinopyroxenes are lower in harzburgite than in lherzolite. The harzburgite near the chromitites is not a residual peridotite after simple melt extraction from lherzolite but is formed by open‐system melting (partial melting associated with influx of primitive basaltic melt of deeper origin). Clinopyroxene inclusions within chromite in chromitites exhibit convex‐shaped REE patterns with low HREE and high LREE (+Sr) abundances compared to the host peridotites. The chromitites were formed from a hybridized melt enriched with Cr, Si and incompatible elements (Na, LREE, Sr and H2O). The melt was produced by mixing of secondary melts after melt–rock interaction and the primitive basaltic melts in large melt conduits, probably coupled with a zone‐refining effect. The Cr? of chromites in the chromitites ranges from 0.65 to 0.75 and is similar to those of arc‐related magmas. The upper mantle section of the Isabela ophiolite was initially formed beneath a slow‐spreading mid‐ocean ridge, later introduced by arc‐related magmatisms in response to a switch in tectonic setting during its obduction at a convergent margin.  相似文献   
93.
94.
It is shown that the recently obtained Jordan-Brans-Dicke solutions by Chauvet and Guzmán (1986) are either inconsistent, or only special power-law solutions derived previously by Lorenz-Petzold in various papers.  相似文献   
95.
Abstract 40Ar–39Ar analysis of phlogopite separated from a plagioclase lherzolite of the Horoman Peridotite Complex, Hokkaido, Japan, has yielded a plateau age of 20.6 ± 0.5 Ma in an environment where the metamorphic fluid was characterized by an almost atmospheric Ar isotopic ratio. The age spectrum is slightly saddle-shaped, implying some incorporation of excess 40Ar during the formation of the phlogopite at a depth. As the phlogopite has been inferred to have formed in veins and/or interstitials during exhumation of the peridotite body, metasomatic fluids, to which ground- and sea water might have contributed, were probably involved in the formation of phlogopite in the crustal environment. A total 40Ar–39Ar age of 129 Ma of a whole rock sample of the plagioclase lherzolite, from which the phlogopite was separated and is representative of the main lithology of the Horoman Peridotite Complex, indicates the occurrence of excess 40Ar. Hence, the age has no geological meaning.  相似文献   
96.
97.
Mafic-ultramafic fragments of a dismembered ophiolite complex are abundant in the late Precambrian Pan African belt of the Eastern Desert of Egypt and north-east Sudan. The ultramafic bodies in the Eastern Desert of Egypt are mostly characterised by the harzburgite–dunite–chromitite association. Because of their severe metamorphism, almost all primary silicates were converted to secondary minerals and we use the chrome spinel as a reliable petrogenetic indicator. The podiform chromitite deposits are common as small and irregularly shaped masses in the central and southern parts of the Eastern Desert. They strongly vary in texture, degree of alteration and chemical composition of chrome spinel. The podiform chromitites exhibit a wide range of composition from high Cr to high Al varieties. The Cr of chrome spinel ranges from 0.65 to 0.85 in dunite, quite similar in the high-Cr chromitite, whereas it is around 0.5 in harzburgite. Primary hydrous mineral inclusions, amphibole and phlogopite, in chrome spinel are reported for the first time from the Pan African Proterozoic podiform chromitites. The petrological characteristics of Pan African podiform chromitites and associated peridotites of Egypt are similar to those of Phanerozoic ophiolites. The Proterozoic podiform chromitites may have formed in the same way as the Phanerozoic ones, namely by melt-harzburgite reaction and subsequent melt mixing. The similarity of the mantle section of the late Proterozoic and the Phanerozoic ophiolites suggests that the thermal conditions controlling genesis of the crust–mantle system basically have not changed since the late Proterozoic era. The Pan African harzburgite is very similar to abyssal peridotite at fast-spreading ridges, and the high-Cr, low-Ti character of spinel in chromitite and dunite indicates a genetic link with a supra-subduction zone setting. The late Proterozoic ophiolites of Egypt are possibly a fragment of oceanic lithosphere modified by arc-related magmatic rocks, or a fragment of back-arc basin lithosphere. Received: 26 October 1999 / Accepted: 28 June 2000  相似文献   
98.
Isotopic compositions of potassium and calcium in individual magnetic spherules were determined. No significant anomaly was observed for potassium within twice the statistical error (2σ), although for calcium isotopes enrichments of46Ca,44Ca and42Ca were observed in one spherule. The relative excess of46Ca,44Ca and42Ca in the spherule agrees with the relative yield of spallogenic calcium isotopes observed in iron meteorites. This fact indicates that the enrichment in the calcium isotopes was caused by cosmic ray irradiation of the spherule in outer space.  相似文献   
99.
Possible sub-arc origin of podiform chromitites   总被引:6,自引:1,他引:6  
Abstract The sub-arc mantle condition possibly favors the formation of podiform chromitites. The Cr/(Cr + Al) atomic ratio (= Cr#) of their chromian spinel frequently is higher than 0.7, which is comparable with the range for arc-related primitive magmas. This almost excludes the possibility of their sub-oceanic origin, because both oceanic peridotites and MORB have chromian spinel with the Cr# < 0.6. Precipitation of chromitite and associated dunite enhances a relative depletion of high-field strength elements (HFSE) to large-ion lithophile elements (LILE), one of chemical characteristics of arc magmas, for the involved magma. This cannot alter completely, however, the MORB to the arc-type magma, especially for Ti and Zr. The presence of chromitite xenoliths, similar both in texture and in chemistry to podiform chromitites of some ophiolitic complexes, in some Cenozoic alkali basalts from the southwest Japan arc indicates directly that the upper mantle beneath the Japan arcs has chromitites.  相似文献   
100.
The petrological characteristics of peridotite xenoliths exhumedfrom the lithospheric mantle below the Western Pacific arcs(Kamchatka, NE Japan, SW Japan, Luzon–Taiwan, New Irelandand Vanuatu) are reviewed to obtain an overview of the supra-subductionzone mantle in mature subduction systems. These data are thencompared with those for peridotite xenoliths from recent orolder arcs described in the literature (e.g. New Britain, WesternCanada to USA, Central Mexico, Patagonia, Lesser Antilles andPannonian Basin) to establish a petrological model of the lithosphericmantle beneath the arc. In currently active volcanic arcs, thedegree of partial melting recorded in the peridotites appearsto decrease away from the fore-arc towards the back-arc region.Highly depleted harzburgites, more depleted than abyssal harzburgites,occur only in the frontal arc to fore-arc region. The degreeof depletion increases again to a degree similar to that ofthe most depleted abyssal harzburgites within the back-arc extensionalregion, whether or not a back-arc basin is developed. Metasomatismis most prominent beneath the volcanic front, where the magmaproduction rate is highest; silica enrichment, involving themetasomatic formation of secondary orthopyroxene at the expenseof olivine, is important in this region because of the additionof slab-derived siliceous fluids. Some apparently primary orthopyroxenes,such as those in harzburgites from the Lesser Antilles arc,could possibly be of this secondary paragenesis but have beenrecrystallized such that the replacement texture is lost. TheTi content of hydrous minerals is relatively low in the sub-arclithospheric mantle peridotites. The K/Na ratio of the metasomatichydrous minerals decreases rearward from the fore-arc mantleas well as downward within the lithospheric mantle. The lithosphericmantle wedge peridotites, especially metasomatized ones frombelow the volcanic front, are highly oxidized. Shearing of themantle wedge is expected beneath the volcanic front, and isrepresented by fine-grained peridotite xenoliths. KEY WORDS: mantle wedge; lithospheric mantle; peridotite xenoliths; melting; metasomatism  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号