首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   162篇
  免费   8篇
测绘学   2篇
地球物理   41篇
地质学   50篇
海洋学   56篇
天文学   14篇
综合类   1篇
自然地理   6篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2018年   5篇
  2017年   8篇
  2016年   5篇
  2014年   8篇
  2013年   8篇
  2012年   5篇
  2011年   5篇
  2010年   4篇
  2009年   5篇
  2008年   11篇
  2007年   12篇
  2006年   17篇
  2005年   8篇
  2004年   4篇
  2003年   8篇
  2002年   1篇
  2000年   1篇
  1999年   7篇
  1998年   3篇
  1997年   6篇
  1996年   2篇
  1995年   4篇
  1994年   5篇
  1993年   3篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1986年   6篇
  1985年   3篇
  1983年   1篇
  1980年   3篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
  1973年   1篇
排序方式: 共有170条查询结果,搜索用时 15 毫秒
41.
The ages of fossil planktonic foraminifera,Pulleniatina obliquiloculata, in sediments (core 3bPC) from the western North Pacific were determined by aspartic acid chronology, which uses the racemization reaction rate constant of aspartic acid (kAsp). Aspartic acid racemization-based ages (Asp ages) ranged from 7,600 yrBP at the surface, to 307,000 yrBP at a depth of 352.9 cm in the sediments. This sediment core was also dated by the glacial-interglacial fluctuation of δ18O chronology, and the ages determined by both chronologies were compared. The ages derived from aspartic acid chronology and δ18O stratigraphy were more or less consistent, but there appeared to be some differences in age estimates between these two dating methods at some depths within the core. In the core top sediments, the likely cause for the age discrepancy could be the loss of the surface sediment during sampling of the core. At depths of 66.3 and 139 cm within the core, Asp ages indicated reduced sedimentation rates duringca. 60,000-80,000 yrBP andca. 140,000–190,000 yrBP. The maximum age differences in both chronologies are 33,000 yr and 46,600 yr during each of these periods. These anomalous reductions in sedimentation rates occurring during these periods could possibly be related to some geological events, such as an increased dissolution effect of the calcium carbonate in the western North Pacific. Another possible reason for these age differences could be the unreliability in δ18O ages of core 3bPC as they were estimated by δ18O ages of another core, 3aPC.  相似文献   
42.
The wind-induced sea-level variations at Hakata tidal station in winter are reproduced realistically using a one-way nested model. This nested model is constructed with a structured finite-difference Princeton Ocean Model (POM) for the Tsushima-Korea Straits, and an unstructured Finite Volume Coastal Ocean Model (FVCOM) for Fukuoka Bay divided into triangular-cell grids. The correlation coefficient and root-mean-square error between observed and modeled results are 0.742 and 1.88 [cm], respectively. Moreover, the results show that the nested model with FVCOM is more accurate than the model in which FVCOM is replaced with a high-resolution POM for Fukuoka Bay. This indicates that the nested model constructed with structured and unstructured models works effectively in hindcasting the wind-induced sea-level variations.  相似文献   
43.
We have developed new systems capable of profiling to >1000 m for measuring in situ pH and fugacity of CO2 (fCO2) in the ocean using spectrophotometric analysis (pH and CO2 profilers). The in situ pH is determined by detecting the color change of the pH indicator (m-cresol purple). It can withstand ambient pressure to 1000 m depth. The CO2 profiler analyzed in situ fCO2 by detecting the change of pH in an inner solution, equilibrated with the seawater through a gas permeable membrane. It can be operated to 2500 m depth. We used an amorphous fluoropolymer tubing form of AF-2400 for the gas permeable membrane due to its high gas permeability coefficients. The inner solution was a mixture of 2 μM bromocresol purple (BCP) and 5 μM sodium hydroxide. This system gave us a response time of 1 minute, which is twice as fast as previous systems. The precisions of pH and CO2 profilers were within 0.002 and 2.5% respectively. We have used these profilers to study the North Pacific, obtaining good agreement with the difference between the data from profilers and a discrete bottle of 0.002 ± 0.005 pH (SE, n = 25) and −0.4 ± 3 μatm (SE, n = 31).  相似文献   
44.
Sinking particles were analyzed for their nitrogen isotopic ratio δ15N) of total particulate nitrogen (PN), stable carbon isotopic ratio (δ13C) and radioactive isotopic ratio (δ14C) of total particulate organic carbon (POC), at three different latitudinal (temperate, subpolar and equatorial) and geomorphological (trench, proximal abyssal plain and distal abyssal plain) sites in the western North Pacific Ocean using year-long time series sediment trap systems, to clarify the common vertical trends of the isotopic signals in deep water columns. Although the δ15N and δ13C values of sinking particulate organic matter (POM) were partly affected by the resuspension of sedimentary POM from the sea floor, especially in the trench, the changes in δ15N and δ13C values owing to the resuspension could be corrected by calculation of the isotopic mass balance from δ14C of sinking POC. After this correction, common downward decreasing trends in δ15N and δ13C values were obtained in the deep water columns, irrespective of the latitudes and depths. These coincidental isotopic signals between δ15N and δ13C values provide new constraints for the decomposition process of sinking POM, such as the preferential degradation of 15N- and 13C-rich compounds and the successive re-formation of the sinking particles by higher trophic level organisms in the deep water column.  相似文献   
45.
Settling particles were collected at 1,460 m and 3,760 m depth in the Antarctic Ocean with sediment traps of time series type. The total deployment period of 40 days was divided into four terms of 10 days each. Seawater samples were collected both at deployment and retrieval of the traps at each site. During the 42 days the concentration of silicate in the surface water decreased by 32%, whereas those of nitrate and phosphate decreased by only 4–5%. The total particulate flux in the Antarctic Ocean is the largest among those hitherto observed in the world ocean. The time variation of the particulate flux at 1,460 m depth almost coincided with that at 3,760 m. The settling particles were comprised roughly of 80% biogenic silica, 15% organic matter and 5% other substances including sea salt. The clay fraction was only 0.05% at 1,460 m depth. The settling flux of biogenic silica agrees fairly well with the calculated rate of change in the concentration of silicate in the surface 100 m. Thus it is concluded that preferential propagation of diatoms reduces the concentration of silicate prior to other nutrients in the Antarctic Ocean.  相似文献   
46.
Journal of Oceanography - Copper toxicity inChattonella antiqua (Raphidophyceae) was examined using an artificial seawater medium. The growth rate (Μ) was found to be a unique function of...  相似文献   
47.
An automated titration for the Winkler method is presented for measuring primary productivity in the ocean. The system is based on a microcomputer-controlled titration with potentiometric endpoint detection. By the use of 0.005-N sodium thiosulfate as a titrant and a program designed to shorten the time for measuring, the method achieves a precision of 0.04% coefficient of variation with a range of 0.01 to 0.10% for six replicates of samples at oxygen concentration of 70 to 250 M. It takes about four to five minutes to measure one sample.  相似文献   
48.
Flow cytometry (FCM) is now becoming a routine tool for the enumeration and optical characterization of bacteria in marine environments. We investigated the effects of sample fixation and storage upon flow cytometric determination of marine bacteria. Fixed and unfixed seawater samples were analyzed by FCM immediately aboard ship and/or later in the laboratory, and the appearances of the fluorescence signals and bacterial counts of these samples were compared. Fixation and storage led to the formation of multiple peaks in fluorescence histograms; this was also seen in 22 out of 36 samples frozen in liquid nitrogen. Fixation did not, but storage did induce a decrease of bacterial counts: a rapid decrease during the first 3 days followed by a slower decline. The decline of cell numbers in stored samples was expressed by a regression model. Our studies indicate that precaution is necessary when interpreting the data from fixed and/or stored marine bacterial samples analyzed by FCM. The possibility that the procedure of fixation and storage leads to the appearance of high DNA and low DNA bacterial groups should be considered.  相似文献   
49.
The general properties of sea ice and overlying snow in the southern Sea of Okhotsk were examined during early February of 2003 to 2005 with the P/V “Soya”. Thin section analysis of crystal structure revealed that frazil ice (48% of total core length) was more prevalent than columnar ice (39%) and that stratigraphic layering was prominent with a mean layer thickness of 12 cm, indicating that dynamic processes are essential to ice growth. The mean thickness of ice blocks and visual observations suggest that ridging dominates the deformation process above thicknesses of 30 to 40 cm. As for snow, it was found that faceted crystals and depth hoar are dominant (78%), as which is also common in the Antarctic sea ice, and is indicative of the strong vertical temperature gradients within the snow. Stable isotope measurements (δ18O) indicate that snow ice occupies 9% of total core length and that the mass fraction of meteoric ice accounts for 1 to 2% of total ice volume, which is lower than the Antarctic sea ice. Associated with this, the effective fractionation coefficient during the freezing of seawater was also derived. Snow ice was characterized by lower density, higher salinity, and nearly twice the gas content of ice of seawater origin. In addition, it is shown that the surface brine volume fraction and freeboard are well correlated with ice thickness, indicating some promise for remote sensing approaches to the estimation of ice thickness.  相似文献   
50.
We investigated biogenic silica, several biological components, and silicate in pore-water in the abyssal sediment to determine silicon flux of western North Pacific during several cruises. The surficial sediment biogenic silica content was high at high latitudes with the boundary running along the Kuroshio Extension, and maximum values (exceeding 20%) were found in the Oyashio region. In the subtropical region to the south, most stations showed less than 5% biogenic silica content. This distribution pattern reflected primary production and ocean currents in the surface layer very well. Pore-water samples were collected from 4 stations along the east coast of Japan. The highest asymptotic silicic acid concentration (670 μmol L?1) in pore-water was observed at the junction of Kuroshio and Oyashio, followed by samples from the Oyashio region. It is at the southern station that the lowest value (450 μmol L?1) was observed, and the primary production is low under the influence of Kuroshio there. The diffusive flux followed the same geographic trend as the asymptotic silicic acid concentrations did, ranging 77–389 mmol m?2 yr ?1. Multiple sampling of pore-water was conducted throughout the year at one station at high latitude. The average annual biogenic silica rain flux observed using sediment traps was 373 mmol m?2 yr?1; the diffusive flux and burial flux at the sediment–water interface were 305 and 9 mmol m?2 yr?1, respectively. We concluded that most of the settling silica particles dissolved and diffused at the sediment–water interface and approximately 3% only were preserved in this area. In addition, the obvious time lag observed between the peak rain flux and the maximum diffusive flux suggested that primary production in the surface layer has a great influence on the sedimentation environment of abyssal western North Pacific. These transitions of Si flux at the sediment–water interface were considerably greater in northwestern North Pacific than in southwestern North Pacific. In addition, a station in the Philippine Sea indicated high biogenic silica content because of Ethmodiscus ooze, which are scattered randomly on the sea floor in the subtropical region.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号