首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   131篇
  免费   9篇
  国内免费   15篇
测绘学   4篇
大气科学   5篇
地球物理   42篇
地质学   53篇
海洋学   37篇
天文学   6篇
自然地理   8篇
  2021年   1篇
  2019年   6篇
  2018年   1篇
  2017年   6篇
  2016年   2篇
  2015年   1篇
  2014年   3篇
  2013年   7篇
  2012年   8篇
  2011年   13篇
  2010年   6篇
  2009年   22篇
  2008年   9篇
  2007年   9篇
  2006年   10篇
  2005年   4篇
  2004年   4篇
  2003年   3篇
  2002年   5篇
  2001年   6篇
  2000年   2篇
  1999年   1篇
  1998年   3篇
  1997年   1篇
  1996年   2篇
  1994年   1篇
  1993年   2篇
  1992年   3篇
  1990年   2篇
  1989年   2篇
  1987年   1篇
  1985年   3篇
  1984年   2篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1975年   1篇
排序方式: 共有155条查询结果,搜索用时 62 毫秒
61.
An algorithm was evaluated for estimating primary production in the Kuroshio front of the East China Sea. The algorithm involves three principal inputs: chlorophyll-a (Chl-a) vertical profile, water column photosynthetic parameter and underwater irradiance parameter. We construct empirical models for estimating those three inputs from sea surface variables accessible by means of satellite remote sensing. Types of Chl-a vertical profile were closely associated with water mass features, and sea surface temperature seemed to be a potential variable to distinguish profile types. The consequence of the deep Chl-a maximum (DCM) presence was investigated by comparing the vertically non-uniform Chl-a profile against the uniform Chl-a profile in terms of the integrated biomass and primary production estimates. Since the DCM in the frontal region occurred in a relatively shallow layer with relatively high light level, allowing intensive photosynthetic processes to take place in the DCM layer. In contrast, as the DCM in the Kuroshio region occurred in the low-light, deep layer, it contributed less to the integrated primary production. We inferred that the DCM formation is more important in the frontal region than in the Kuroshio region, as they potentially contributed within 30.9% (±9.1%) and 20.9% (±5.4%) to the integrated primary production in the frontal and the Kuroshio regions, respectively. Such different degrees in the DCM contribution was then revealed by the higher integrated primary production in the frontal region than in the Kuroshio region.  相似文献   
62.
This study estimates a realistic change of the Japan Sea by assimilating satellite measurements into an eddy-resolving circulation model. Suboptimal but feasible assimilation schemes of approximate filtering and nudging play essential roles in the system. The sequential update of error covariance significantly outperforms the asymptotic covariance in the sequential assimilation due to the irregular sampling patterns from multiple altimeter satellites. The best estimates show an average rms difference of only 1.2°C from the radiometer data, and also explain about half of the sea level variance measured by the altimeter observation. The subsurface conditions associated with the mesoscale variabilities are also improved, especially in the Tsushima Warm Current region. It is demonstrated that the forecast limit strongly depends on variable, depth, and location.  相似文献   
63.
The high-pressure stability limit of calcium aluminosilicate (CAS) phase has been examined in its end-member CaAl4Si2O11 composition at 18–39 GPa and 1,670–2,300 K in a laser-heated diamond-anvil cell (LHDAC). The in-situ synchrotron X-ray diffraction measurements revealed that the CAS phase decomposes into three-phase assemblage of cubic Al-bearing CaSiO3 perovskite, Al2O3 corundum, and SiO2 stishovite above 30 GPa and 2,000 K with a positive pressure–temperature slope. Present results have important implications for the subsolidus mineral assemblage of subducted sediment and the melting phase relation of basalt in the lower mantle.  相似文献   
64.
Journal of Paleolimnology - We inferred paleoenvironmental conditions in Lake Inawashiro-ko, Japan, over the past 1700 years, using diatom assemblages in the uppermost 2 m of...  相似文献   
65.
Use of ocean data assimilation in meteorological applications is expected to reveal the influence of cloud-covered oceanic mesoscale processes on wintertime weather and climate in coastal areas. In particular, eddy-resolving Ocean Circulation Model (OCM) data assimilation that reproduces seasonally persistent oceanic mesoscale eddies is useful when simulating coastal precipitation. In the present study, the OCM-assimilation sea surface temperature (SST) is applied to a long-term atmospheric simulation over the Japan/East Sea area in the 2004/2005 winter season (December–February, DJF), to investigate seasonal and daily influences of oceanic mesoscale eddies on precipitation. The simulated winter precipitation is improved by the OCM assimilation via the DJF evaporation around a cold tongue. The strong intrusion of the southeast-directed cold tongue reduces the degree of overestimation by coastal precipitation simulations in December and January. In contrast, the ocean assimilation barely improves the simulation results in February because of weak intrusion of the cold tongue. In December and January, an abruptly large anomaly of northwesterly surface wind (> 1 m s?1) resulting from the OCM assimilation often influences 3-hour precipitation in the downstream area of the cold tongue. In contrast, the slowly-varying anomaly of evaporation does not necessarily lead to daily precipitation anomalies, although the DJF evaporation anomaly is important in the DJF precipitation.  相似文献   
66.
The equation of state and pressure-induced structural evolution of pyrite-type SiO2 have been investigated based on synchrotron X-ray diffraction measurements in a diamond-anvil cell. The Rietveld refinement revealed that the oxygen coordinate x of pyrite-type SiO2 increases with increasing pressure. The SiO6 coordination polyhedra of pyrite-type SiO2 is less compressible than the unit cell, and the increase in x induces a rotation of the SiO6 coordination polyhedra to fill the blank space in the unit cell. Thus, the volume reduction in pyrite-type SiO2 is achieved mainly by the rotation of the SiO6 polyhedra, rather than by the compression of the SiO6 polyhedra. In addition, the increase in x with increasing pressure enhances a distortion of the coordination polyhedra of pyrite-type SiO2, implying that pyrite-type SiO2 is not likely to transform into a fluorite-type structure at higher pressures.  相似文献   
67.
The sound velocities of two aluminum-rich phases in the lower mantle, hexagonal new Al-rich phase (NAL) and its corresponding high-pressure polymorph orthorhombic Ca-ferrite-type phase (CF), were determined with the Brillouin scattering method in a pressure range from 9 to 73 GPa at room temperature. Both NAL and CF samples have identical chemical composition of Na0.4Mg0.6Al1.6Si0.4O4 (40 % NaAlSiO4–60 % MgAl2O4). Infrared laser annealing in the diamond anvil cell was performed to minimize the stress state of the sample and obtain the high-quality Brillouin spectra. The results show shear modulus at zero pressure G 0 = 121.960 ± 0.087 GPa and its pressure derivative G’ = 1.961 ± 0.009 for the NAL phase, and G 0 = 129.653 ± 0.059 GPa and G’ = 2.340 ± 0.004 for the CF phase. The zero-pressure shear velocities of the NAL and CF phases are obtained to be 5.601 ± 0.005 km/sec and 5.741 ± 0.001 km/sec, respectively. We also found that shear velocity increases by 2.5 % upon phase transition from NAL to CF at around 40 GPa.  相似文献   
68.
The “overshoot scenario” is an emissions scenario in which CO2 concentration in the atmosphere temporarily exceeds some pre-defined, “dangerous” threshold (before being reduced to non-dangerous levels). Support for this idea comes from its potential to achieve a balance between the burdens of current and future generations in dealing with global warming. Before it can be considered a viable policy, the overshoot scenario needs to be examined in terms of its impacts on the global climate and the environment. In, particular, it must be determined if climate change cause by the overshoot scenario is reversible or not, since crossing that “dangerous” CO2 threshold could result in climate change from which we might not be able to recover. In this study, we quantify the change in several climatic and environmental variables under the overshoot scenario using a global climate model of intermediate complexity. Compared to earlier studies on the overshoot scenario, we have an explicit carbon cycle model that allows us to represent carbon-climate feedbacks and force the climate model more realistically with CO2 emissions rates rather than with prescribed atmospheric pCO2. Our standard CO2 emissions rate is calculated on the basis of historical atmospheric pCO2 data and the WRE S650 non-overshoot stabilization profile. It starts from the preindustrial year 1760, peaks in the year 2056, and ends in the year 2300. A variety of overshoot scenarios were constructed by increasing the amplitude of the control emissions peak but decreasing the peak duration so that the cumulative emissions remain essentially constant. Sensitivity simulations of various overshoot scenarios in our model show that many aspects of the global climate are largely reversible by year 2300. The significance of the reversibility, which takes roughly 200 years in our experiments, depends on the time horizon with which it is viewed or the number of future generations for whom equity is sought. At times when the overshoot scenario has emissions rates higher then the control scenario, the transient changes in atmospheric and oceanic temperatures and surface ocean pH can be significant, even for moderate overshoot scenarios that remain within IPCC SRES emissions scenarios. The large transient changes and the centennial timescale of climate reversibility suggest that the overshoot might not be the best mitigation approach, even if it technically follows the optimal economic path.  相似文献   
69.
A sudden strong coastal current called a “kyucho” occurred in August 2013 in the eastern coastal waters of Wakasa Bay, Japan. This study examined its characteristics based on both observational data collected by intensive field investigations and the simulation results of a numerical model. The field investigations comprised moored buoy observations near the coast and voyages by a research vessels and fishing boats. The mooring observations indicated that a current speed exceeding 50 cm s?1 occurred abruptly near the eastern coast of the bay, in association with a synchronous change in the current direction. Data collected by acoustic Doppler current profilers (ACDPs) mounted on the vessels showed that a clockwise eddy existed in the bay and that the current on the east side of the eddy generated the kyucho near the coast. Based on the results of the numerical model and the analysis of the ADCP data, it was considered that the clockwise eddy was generated by a strong current at the tip of the Tango Peninsula, in the western part of the bay. As the eddy propagated from west to east across the bay, it induced the kyucho in the coastal waters in the east of the bay.  相似文献   
70.
We produced a four-dimensional variational ocean re-analysis for the Western North Pacific over 30 years (FORA-WNP30). It is the first-ever dataset covering the western North Pacific over 3 decades at eddy-resolving resolution. The four-dimensional variational analysis scheme version of the Meteorological Research Institute Multivariate Ocean Variational Estimation system (MOVE-4DVAR) is employed to conduct a long-term reanalysis experiment during 1982–2012. After evaluating the basic performance of FORA-WNP30, the interannual to decadal variability is analyzed. Overall, FORA-WNP30 reproduces basic features in the western North Pacific well. One of outstanding features in FORA-WNP30 is that anomalous events such as the Kuroshio large meander and anomalous intrusion of the Oyashio in the 1980s, when there were no altimeter data, are successfully reproduced. FORA-WNP30 is therefore a valuable dataset for a variety of oceanographic research topics and potentially for related fields such as climate study, meteorology and fisheries.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号