首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   334篇
  免费   11篇
  国内免费   4篇
测绘学   4篇
大气科学   8篇
地球物理   96篇
地质学   171篇
海洋学   32篇
天文学   31篇
综合类   2篇
自然地理   5篇
  2023年   3篇
  2022年   7篇
  2021年   8篇
  2020年   5篇
  2019年   5篇
  2018年   32篇
  2017年   17篇
  2016年   21篇
  2015年   14篇
  2014年   22篇
  2013年   34篇
  2012年   17篇
  2011年   22篇
  2010年   26篇
  2009年   16篇
  2008年   15篇
  2007年   11篇
  2006年   11篇
  2005年   7篇
  2004年   4篇
  2003年   2篇
  2002年   3篇
  2001年   9篇
  2000年   3篇
  1999年   2篇
  1998年   4篇
  1997年   2篇
  1996年   1篇
  1994年   3篇
  1990年   4篇
  1989年   2篇
  1985年   1篇
  1983年   2篇
  1982年   2篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
  1976年   2篇
  1973年   1篇
  1972年   2篇
  1971年   1篇
  1970年   1篇
  1969年   1篇
  1949年   1篇
排序方式: 共有349条查询结果,搜索用时 31 毫秒
191.
The October 23, 2011 M7.2 Tabanli- Van and November 9, 2011 M5.2 Edremit – Van earthquakes caused damage in a widespread area across the Van province in Turkey. The ground motions, the damage caused by these earthquakes and the recent progress related to recovery efforts are presented herein. First, the key properties of the recorded strong ground motions like spectral amplitudes and directionality are evaluated. The observed damage in the affected reinforced concrete and masonry structures are discussed. The set of common structural damage mechanisms(i.e., soft story failure, torsional response due to plan irregularity, short column failure, pull out failure, pounding) observed in the damaged buildings were identified. The relationship between the key structural properties and the extent of damage is investigated. The primary loss drivers across the region were identified to be the poor quality of workmanship and improper use of building materials. The results from the investigation suggest that a large portion of the loss could have been prevented if sufficient attention and care were given to the implementation of the design regulations and in particular to the construction practice. Lastly, the recent progress in the ongoing rebuilding activities is presented.  相似文献   
192.
Subduction‐related volcanic rocks are widespread in the Central Pontides of Turkey, and represented by the Hamsaros volcanic succession in the Sinop area to the north. The volcanic rocks display high‐K calc‐alkaline, shoshonitic and ultra‐K affinities. 40Ar/39Ar age data indicate that the rocks occurred during the Late Cretaceous (ca 82 Ma), and the volcanic suites were coeval. Primitive mantle‐normalized trace element patterns of all the lavas are characterized by strong enrichments in large ion lithophile elements (LILE) (Rb, Ba, K, and Sr), Th, U, Pb, and light rare earth elements (LREE; La, Ce) and prominent negative Nb, Ta, and Ti anomalies, all typical of subduction‐related lavas. There is a systematic increase in the enrichment of incompatible trace elements from the high‐K calc‐alkaline lavas through the shoshonitic to the ultra‐K lavas. In addition, the shoshonitic and ultra‐K lavas have significantly higher 87Sr/86Sr (0.70666–0.70834) and lower 143Nd/144Nd (0.51227–0.51236) initial ratios than coexisting high‐K calc‐alkaline lavas (87Sr/86Sr 0.70576–0.70613, 143Nd/144Nd 0.51245–0.51253). Geochemical and isotopic data show that the shoshonitic and ultra‐K rocks cannot be derived from the high‐K calc‐alkaline suite by any shallow level differentiation process, and point to a derivation from distinct mantle sources. The shoshonitic and ultra‐K rocks were derived from metasomatic veins related to melting of recycled subducted sediments, but the high‐K calc‐alkaline rocks from a lithospheric source metasomatized by fluids from subduction zone.  相似文献   
193.
A monitoring operation conducted over more than seven years has been addressing chemical fluctuations displayed by several cool, low-discharge springs located close to the highly seismic Vrancea area (Romania). Those outflows compositions proved to be strongly controlled by binary, essentially isochemical mixing between a deep-origin brine and meteoric freshwater. By taking advantage of this particular setting, there have been constructed diagrams aimed at investigating how the groundwater-discharges Na–K–Mg geothermometric parameters fluctuated as a function of the chloride content (taken to be an estimator of the freshwater-induced dilution). We made use of the reciprocal algebraic relationships existing between the equations describing the Na–K–Mg geothermometric parameters “Na–K temperature” and “K–Mg temperature” on the one hand, and the so-called “maturity index” (MI) on the other. In an accordingly derived plot of MI against the logarithm of the chloride concentration, a series of data-points being quite uniformly off-set from the MI dilution-curve constructed for an apparently “regular” period, suggested that, episodically, all concerned springwaters were simultaneously subject to some similar changes in the controlling geochemical processes. One such modification intervened 3–4 months before the occurrence of the strongest earthquake ( \(M_{\text{w}} = 5.8\) ) of the hydrochemical monitoring period. The consequently derived interpretation was that then, the numerical values of certain geothermometric coefficients were likely altered: such a process could be consistent with changes in the alkali feldspars solubility relationships, possibly in response to episodic Al–Si complexing which might develop within a hypothesised, still active, exhumation-channel.  相似文献   
194.
We examine the one-dimensional direct current method in anisotropic earth formation. We derive an analytic expression of a simple, two-layered anisotropic earth model. Further, we also consider a horizontally layered anisotropic earth response with respect to the digital filter method, which yields a quasi-analytic solution over anisotropic media. These analytic and quasi-analytic solutions are useful tests for numerical codes. A two-dimensional finite difference earth model in anisotropic media is presented in order to generate a synthetic data set for a simple one-dimensional earth. Further, we propose a particle swarm optimization method for estimating the model parameters of a layered anisotropic earth model such as horizontal and vertical resistivities, and thickness. The particle swarm optimization is a naturally inspired meta-heuristic algorithm. The proposed method finds model parameters quite successfully based on synthetic and field data. However, adding 5 % Gaussian noise to the synthetic data increases the ambiguity of the value of the model parameters. For this reason, the results should be controlled by a number of statistical tests. In this study, we use probability density function within 95 % confidence interval, parameter variation of each iteration and frequency distribution of the model parameters to reduce the ambiguity. The result is promising and the proposed method can be used for evaluating one-dimensional direct current data in anisotropic media.  相似文献   
195.
Ground motion intensity parameters of past and potential earthquakes are required for a range of purposes including earthquake insurance practice. In regions with no or sparse earthquake recordings, most of the available methods generate only peak ground motion parameters. For cases where full ground motion time histories are required, simulations that consider fault rupture processes become necessary. In this study, a major novel use of simulated ground motions is presented in insurance premium calculations which also require ground motion intensity measures that are not always available through observations. For this purpose, potential earthquakes in Bursa are simulated using stochastic finite-fault simulation method with dynamic corner frequency model. To ensure simulations with reliable synthetic ground motions, input parameters are derived from regional data. Regional model parameters are verified by comparisons against the observations as well as ground motion prediction equations. Next, a potential large magnitude event in Bursa is simulated. Distribution of peak ground motion parameters and time histories at selected locations are obtained. From these parameters, the corresponding Modified Mercalli Intensities (MMI) are estimated. Later, these MMIs are used as the main ground motion parameter in damage probability matrices (DPM). Return period of the scenario earthquake is obtained from the previous regional seismic hazard studies. Finally, insurance rates for Bursa region are determined with implementation of two new approaches in the literature. The probability of the scenario event and the expected mean damage ratios (MDR) from the corresponding DPMs are used, and the results are compared to Turkish Catastrophe Insurance Pool (TCIP) rates. Results show that insurance premiums can be effectively computed using simulated ground motions in the absence of real data.  相似文献   
196.
This study proposes a solution to the problem of maintaining the performance and sustainability of district-scale, cooling-dominated ground coupled heat pump (GCHP) systems. These systems tend to overheat because heat dissipates slowly in relation to the size of the borefields. To demonstrate this problem, a 2000-borehole field is considered at a district-scale GCHP system in the Upper Midwest, US. The borefield’s ground and fluid temperature responses to its design heating and cooling loads are simulated using computational fluid dynamics implemented by applying the finite volume method. The ground temperature is predicted by applying the thermal loads uniformly over the borefield and simulating heat dissipation to the surrounding geology through conduction coupled with advection due to groundwater flow. The results show that a significant energy imbalance will develop in the ground after the first few years of GCHP operation, even with high rates of groundwater flow. The model presented in this study predicts that the temperature at the center of the borefield will reach 18 °C after 5 years and approximately 50 °C after 20 years of operation in the absence of any mitigation strategies. The fluid temperature in the boreholes is then simulated using a single borehole model to estimate the heat pump coefficient of performance, which decreases as the modeled system heats up. To balance the energy inputs/outputs to the ground—thus maintaining the system’s performance—an operating scheme utilizing cold-water circulation during the winter is evaluated. Under the simulated conditions, this mitigation strategy carries the excess energy out of the borefield. Therefore, the proposed mitigation strategy may be a viable measure to sustaining the operating efficiency of cooling-dominated, district-scale borefields in climates with cold winters.  相似文献   
197.
No detailed information has previously been available on the geological and geophysical characteristics of the sea floor and the underlying strata of Mersin Harbour, Northeastern Mediterranean Sea (Turkey). Continuous resistivity profiling (CRP) and borehole data from Mersin Harbour were used to interpret geoelectric stratigraphy of Neogene-Quaternary sediments in the area. This represents one of few such detailed case studies that have applied these valuable CRP techniques for the purpose of marine stratigraphic imaging. It was found that the Neogene-Quaternary sedimentary succession in the area consists of three geoelectric units (GU1, GU2, and GU3 from base to top). The lowest unit, GU1, has a resistivity value of greater than 20.0 ohm-m and consists of Miocene aged limestone and marl. The middle unit, GU2, is characterized by resistivity values ranging from 3.0 to 20.0 ohm-m. Its thickness is greater than 90 m, with the upper section being composed of stiff clay sequences which are Plio-Pleistocene in age. The uppermost unit, GU3, has resistivity values varying from 1.0 to 3.0 ohm-m. This unit displays a maximum thickness of 15 m, and is composed of Holocene muds together with gravel, sand, silt and clay (sometimes incorporating shells) materials of the Plio-Pleistocene age and their various mixtures, silty/clay limestone, and conglomerate sandstone. Comparisons of the geoelectric units with the depositional sequences interpreted from the available seismic data outwith, but close to, Mersin Harbour reveal that the geoelectric unit GU3 corresponds to the depositional sequences C (mainly Holocene) and B (mainly Plio-Pleistocene). The geoelectric unit GU2 partly correlates with the depositional sequence B which appears to be Plio-Pleistocene in age. The geoelectric unit GU1, which has not been encountered in previous seismic surveys, is a new discovery within Mersin Harbour. Limited correlation between the seismic and resistivity structures in the study area is attributed to differences in the acoustic impedance and resistivity contrasts of sub-bottom layers, as well as the penetration versus resolution performance of the systems.  相似文献   
198.
Recently acquired (2005) multi-beam bathymetric and high-resolution seismic reflection data from the E–W-oriented Gulf of Gökova off SW Anatolia were evaluated in order to assess the uneven seafloor morphology and its evolution in terms of present-day active regional tectonics. Stratigraphically, the three identified seismic units, i.e., the basement, deltaic sediments deposited during Quaternary glacial periods, and modern gulf deposits, are consistent with those observed in previous studies. Structurally, the folds and faults with strike-slip and reverse components have been regionally mapped for the first time. Of these, NE–SW-oriented left-lateral strike-slip faults with compressional components forming the so-called Gökova Fault Zone intersect and displace two WNW–ESE-oriented submarine ridges and deep submarine plains. Thus, strike-slip faults are the youngest major structures in the gulf, and control present-day active tectonism. E–W-oriented folds on the inner and outer shelf, which are generally accompanied by reverse faults, delimit the margins of these submarine ridges, and deform the young basin deposits. These features also reveal the concomitant existence of a compressional tectonic regime. The compressional structures probably represent pressure ridges along left-lateral strike-slip fault segments. However, some E–W-oriented normal faults occur on the northwestern and partly also southern shelf, and along the borders of the adjacent deep submarine plains. They are intersected and displaced by the strike-slip faults. The lower seismicity along the normal faults relative to the NE–SW-oriented strike-slip faults suggests that the former are at present inactive or at least less active.  相似文献   
199.
Seawater intrusion is a major problem to freshwater resources especially in coastal areas where fresh groundwater is surrounded and could be easily influenced by seawater. This study presents the development of a conceptual and numerical model for the coastal aquifer of Karareis region (Karaburun Peninsula) in the western part of Turkey. The study also presents the interpretation and the analysis of the time series data of groundwater levels recorded by data loggers. The SEAWAT model is used in this study to solve the density-dependent flow field and seawater intrusion in the coastal aquifer that is under excessive pumping particularly during summer months. The model was calibrated using the average values of a 1-year dataset and further verified by the average values of another year. Five potential scenarios were analyzed to understand the effects of pumping and climate change on groundwater levels and the extent of seawater intrusion in the next 10 years. The result of the analysis demonstrated high levels of electrical conductivity and chloride along the coastal part of the study area. As a result of the numerical model, seawater intrusion is simulated to move about 420 m toward the land in the next 10 years under “increased pumping” scenario, while a slight change in water level and TDS concentrations was observed in “climate change” scenario. Results also revealed that a reduction in the pumping rate from Karareis wells will be necessary to protect fresh groundwater from contamination by seawater.  相似文献   
200.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号