首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32029篇
  免费   425篇
  国内免费   372篇
测绘学   1221篇
大气科学   2437篇
地球物理   6203篇
地质学   11293篇
海洋学   2484篇
天文学   7638篇
综合类   143篇
自然地理   1407篇
  2021年   279篇
  2020年   276篇
  2019年   324篇
  2018年   816篇
  2017年   778篇
  2016年   1019篇
  2015年   590篇
  2014年   957篇
  2013年   1687篇
  2012年   1037篇
  2011年   1277篇
  2010年   1074篇
  2009年   1387篇
  2008年   1203篇
  2007年   1159篇
  2006年   1177篇
  2005年   978篇
  2004年   869篇
  2003年   867篇
  2002年   856篇
  2001年   770篇
  2000年   743篇
  1999年   672篇
  1998年   617篇
  1997年   629篇
  1996年   568篇
  1995年   534篇
  1994年   506篇
  1993年   428篇
  1992年   384篇
  1991年   411篇
  1990年   411篇
  1989年   387篇
  1988年   359篇
  1987年   432篇
  1986年   361篇
  1985年   444篇
  1984年   478篇
  1983年   462篇
  1982年   444篇
  1981年   356篇
  1980年   360篇
  1979年   311篇
  1978年   306篇
  1977年   294篇
  1976年   258篇
  1975年   254篇
  1974年   281篇
  1973年   305篇
  1972年   194篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
751.
We conducted an assessment of the TOPEX dual-frequency nadir ionosphere observations in the TOPEX/Poseidon (T/P) GDR by comparing TOPEX with the Center for Orbit Determination in Europe (CODE) Global Ionosphere Map (GIM), the climatological model IRI2001, and the DORIS (onboard T/P) relative ionosphere delays. We investigated the TOPEX (TOPEX Side A and TOPEX Side B altimeters, TSA and TSB, respectively) ionosphere observations for the time period 1995–2001, covering periods of low, intermediate, and high solar activity. Here, we use absolute path delays (at Ku-band frequency of the TOPEX altimeter and with positive signs) rather than Total Electron Content (TEC). We found significant biases between GIM and TOPEX (GIM–TOPEX) nadir ionosphere path delays: ?8.1 ± 0.4 {mm} formal uncertainties and equivalent to 3.7 TECu) and ?9.0 ± 0.7 {mm} (4.1 TECu) for TSA and TSB, respectively, indicating that the TOPEX path delay is longer (or with higher TECu) than GIM. The estimated relative biases vary with latitude and with daytime or nighttime passes. The estimated biases in the path delays (DORIS–TOPEX) are: ?10.9 ± 0.4 {mm} (5.0 TECu) and ?14.8 ± 0.6 {mm} (6.7 TECu), for TSA and TSB, respectively. There is a distinct jump of the DORIS path delays (?3.9 ± 0.7 {mm}, TSA delays longer than TSB delays) at the TSB altimeter switch in February 1999, presumably due to inconsistent DORIS processing. The origin of the bias between GIM (GPS, L-band) and TOPEX (radar altimeter, Ku-band) is currently unknown and warrants further investigation. Finally, the estimated drift rates between GIM and TSA, DORIS and TSA ionosphere path delays for the 6-year study span are ?0.4 mm/yr and ?0.8 mm/yr, respectively, providing a possible error bound for the TOPEX/Poseidon sea level observations during periods of low and intermediate solar activity.  相似文献   
752.
Jason-1 and TOPEX/Poseidon (T/P) measured sea-surface heights (SSHs) are compared for five regions during the verification tandem phase. The five regions are of similar latitude and spatial extent and include the Gulf of Mexico, Arabian Sea, Bay of Bengal, and locations in the Pacific and Atlantic Oceans away from land. In all five regions, a bias, defined as Jason SSH—TOPEX-B SSH, exists that is different for ascending and descending tracks. For example, in the Gulf of Mexico the bias for ascending tracks was ?0.13 cm and the bias for descending tracks was 2.19 cm. In the Arabian Sea the bias for ascending tracks was ?2.45 cm and the bias for descending tracks was ?1.31 cm. The bias was found to depend on track orientation and significant wave height (SWH), indicating an error in the sea state bias (SSB) model for one or both altimeters. The bias in all five regions can be significantly reduced by calculating separate corrections for ascending and descending tracks in each region as a function of SWH. The correction is calculated by fitting a second-order polynomial to the bias as a function of SWH separately for ascending and descending tracks. An additional constraint is required to properly apply the correction, and we chose to minimize the sum of the TOPEX-B and Jason-1 root-mean-square (rms) crossover differences to be consistent with present SSB models. Application of this constraint shows that the correction, though consistent within each region, is different for each region and that each satellite contributes to the bias. One potential source that may account for a portion of the difference in bias is the leakage in the wave forms in TOPEX-B due to differing altitude rates for ascending and descending tracks. Global SSB models could be improved by separating the tracks into ascenders and descenders and calculating a separate SSB model for each track.  相似文献   
753.
The Indian Ocean tsunami of December 26, 2004, not only affected the Bay of Bengal coast of India but also part of the Arabian Sea coast of India. In particular, the tsunami caused loss of life and heavy damage on some parts of the Kerala coast in southwest India. The tsunami traveled west, south of Sri Lanka, and some of the tsunami energy was diffracted around Sri Lanka and the southern tip of India and moved northward into the Arabian Sea. However, tsunami, being a long gravity wave with a wave length of a few hundred kilometers, has to take a wide turn. In that process, it missed the very southern part of the Kerala coast and did not achieve large amplitudes there. However, further north, the tsunami achieved amplitudes of upto 5 m and caused loss of life and significant damage. Here we identify the physical oceanographic processes that were responsible for selective amplification of the tsunami in certain locations.  相似文献   
754.
Mapping the seabed along the Norwegian coast is costly and time consuming. Hence, finding a modeling method to separate rocky seabed from other substrate types will provide digital maps that may be used to develop cost-effective sampling designs to predict species and habitat distribution. Our approach was to use geophysical data that were quantitative and objectively defined, generalized additive models (GAMs), and Akaike information criterion (AIC) to develop statistical models and select among them. We found that slope, terrain curvature, wave exposure, and depth predicted rocky seabed occurrence with a high degree of certainty.  相似文献   
755.
An assessment of cyclone risk and vulnerability at the village level has evolved, which is an important component of the information system for local level development action plans for preparedness and mitigation. Here, a case study for the Nellore district along the east coast of India is considered. Using maximum probable surges along the coast, total water level (TWL) due to the combined effect of surge, tide, and wind wave is computed for the most vulnerable coastal villages of the Nellore district due to any tropical cyclones. The computations suggest that the TWL along the Nellore coast varies from 2 m in the south to 4 m in the north.  相似文献   
756.
The sea level variations along Visakhapatnam coast are governed by astronomical tides and nontidal oscillations including atmospheric pressure, winds, coastal currents, Ekman Pumping, and river influx. Tidal and nontidal sea level oscillations are usually studied separately because of the vastly different ways in which they are forced. In this study the tidal oscillations along Visakhapatnam are analyzed using GOTIC2 tidal model. The correlation between monthly mean sea level and monthly mean tides is 47% (r = 0.68) and increases to 54% (r = 0.74) when applied for inverse-barometric effect. The major six partial tides are computed and presented. The tidal variations from Neap tide to Spring tide are studied.  相似文献   
757.
A dynamical statistical method is applied for operational forecasting of the Bay of Bengal tropical cyclone “Nargis” of April–May 2008. The method consists of three forecast components, namely (a) analysis of Genesis Potential Parameter (GPP) and maximum potential intensity, (b) track prediction, and (c) 12 hourly intensity prediction for forecasts up to 72 hours. The results of the study showed that GPP could provide necessary predictive signal at early stages of development on the further intensification of the low pressure system into a tropical cyclone. The landfall forecast position errors by different operational numerical models (NWP) showed landfall position errors ranging from 10 km to 150 km and landfall time error ranges from 6 hours early to 6 hours delay. The dynamical statistical model is capable to provide 12 hourly nearly realistic intensity forecasts up to 60 hours of forecast.  相似文献   
758.
Offshore geotechnical surveys form part of an integrated investigation to rejuvenate a decrepit minor port at Badagara, Kerala on the southwestern coast of India. The sediments typify a fluvio-marine milieu ranging from silty clay, sand, silty sand, sandy silt and clayey silt. Geotechnical and sedimentological studies of shallow cores reveal the geotechnical aspects besides the depositional history of the sediments. Downcore geotechnical variations and regressive coefficients based on their inter-relationships highlight diverse factorial inferences. X-Ray Diffraction data indicate the prominent clay type.

A comparative evaluation of the geotechnical characteristics of clayey sediments off Badagara, with similar studies along various sectors of the Kerala coast, both on land as well as in the near shore, is broadly attempted. Geotechnical studies carried out earlier on the uplifted Cochin marine clays provide comparative data for evaluating the possible variations between present day marine clayey sediments occurring along the Kerala coast and uplifted marine clays which, besides their gross variations in levels with respect to the present sea-level, also obviously relate to a much older depositional environment and provenance during probable Holocene times.  相似文献   
759.
In this paper, a case study was performed on a sand compaction pile (SCP) and a gravel compaction pile (GCP) to estimate the dynamic characteristics and the improvement effect of soft ground. The dynamic elastic modulus, shear modulus, bulk modulus, and Poisson's ratio were estimated and the dynamic characteristics were analyzed using the compression and shear wave velocity of the improved ground based on the results of suspension P- and S-wave (PS) logging. The results revealed that the dynamic properties were increased in the order of unimproved subsoil and improved subsoil using SCP and GCP. The increase in the effects of dynamic properties with each replacement ratio of SCP was not large, whereas a good increase in the effects was observed in the case of the improved subsoil with GCP. Consequently, it was presented that the resistance characteristics against the seismic loading of GCP are excellent. As a result of analyzing the density distribution of the improved subsoil through density field logging, the overall density distribution gradually exhibits increasing trends in the order of unimproved subsoil and improved subsoil with SCP and GCP. Thus, the improvement effect of GCP was relatively high in comparison with the same replacement ratio of SCP.  相似文献   
760.
Abstract

During May 1985, a comprehensive GPS and acoustic navigation data set was collected off the Monterey, California coast. Three types of GPS units, a LORAN‐C, and a Miniranger operated concurrently with an OCEANO acoustic system to resolve state‐of‐the‐art accuracies for at‐sea geodetic positioning. This report details the acoustic system which displayed baseline errors of only ±0.25 m over distances to 2600 m. Unfiltered point‐to‐point acoustic navigation errors had a standard deviation of ± 1.25 m, which included ship motion errors in addition to surveying errors. Ninety percent of the stations had navigation standard deviations below ±0.75 m The experiment showed that sub‐meter acoustic surveying is the state‐of‐the‐art.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号