首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3247篇
  免费   108篇
  国内免费   92篇
测绘学   70篇
大气科学   402篇
地球物理   812篇
地质学   1006篇
海洋学   648篇
天文学   301篇
综合类   46篇
自然地理   162篇
  2023年   12篇
  2022年   22篇
  2021年   47篇
  2020年   47篇
  2019年   63篇
  2018年   134篇
  2017年   124篇
  2016年   139篇
  2015年   87篇
  2014年   171篇
  2013年   220篇
  2012年   140篇
  2011年   203篇
  2010年   190篇
  2009年   190篇
  2008年   164篇
  2007年   176篇
  2006年   146篇
  2005年   122篇
  2004年   105篇
  2003年   96篇
  2002年   98篇
  2001年   76篇
  2000年   79篇
  1999年   55篇
  1998年   45篇
  1997年   41篇
  1996年   25篇
  1995年   37篇
  1994年   19篇
  1993年   17篇
  1992年   21篇
  1991年   18篇
  1990年   18篇
  1989年   13篇
  1988年   14篇
  1987年   24篇
  1986年   15篇
  1985年   15篇
  1984年   28篇
  1983年   31篇
  1982年   22篇
  1981年   17篇
  1980年   25篇
  1979年   12篇
  1978年   7篇
  1977年   16篇
  1975年   15篇
  1974年   10篇
  1973年   7篇
排序方式: 共有3447条查询结果,搜索用时 15 毫秒
101.
An ensemble data assimilation system using the 4-dimensional Local Ensemble Transform Kalman Filter is implemented to a global non-hydrostatic Numerical Weather Prediction model on the cubed-sphere. The ensemble data assimilation system is coupled to the Korea Institute of Atmospheric Prediction Systems Package for Observation Processing, for real observation data from diverse resources, including satellites. For computational efficiency in a parallel computing environment, we employ some advanced software engineering techniques in the handling of a large number of files. The ensemble data assimilation system is tested in a semi-operational mode, and its performance is verified using the Integrated Forecast System analysis from the European Centre for Medium-Range Weather Forecasts. It is found that the system can be stabilized effectively by additive inflation to account for sampling errors, especially when radiance satellite data are additionally used.  相似文献   
102.
The climate of the last glacial maximum (LGM) is simulated with a high-resolution atmospheric general circulation model, the NCAR CCM3 at spectral truncation of T170, corresponding to a grid cell size of roughly 75 km. The purpose of the study is to assess whether there are significant benefits from the higher resolution simulation compared to the lower resolution simulation associated with the role of topography. The LGM simulations were forced with modified CLIMAP sea ice distribution and sea surface temperatures (SST) reduced by 1°C, ice sheet topography, reduced CO2, and 21,000 BP orbital parameters. The high-resolution model captures modern climate reasonably well, in particular the distribution of heavy precipitation in the tropical Pacific. For the ice age case, surface temperature simulated by the high-resolution model agrees better with those of proxy estimates than does the low-resolution model. Despite the fact that tropical SSTs were only 2.1°C less than the control run, there are many lowland tropical land areas 4–6°C colder than present. Comparison of T170 model results with the best constrained proxy temperature estimates (noble gas concentrations in groundwater) now yield no significant differences between model and observations. There are also significant upland temperature changes in the best resolved tropical mountain belt (the Andes). We provisionally attribute this result in part as resulting from decreased lateral mixing between ocean and land in a model with more model grid cells. A longstanding model-data discrepancy therefore appears to be resolved without invoking any unusual model physics. The response of the Asian summer monsoon can also be more clearly linked to local geography in the high-resolution model than in the low-resolution model; this distinction should enable more confident validation of climate proxy data with the high-resolution model. Elsewhere, an inferred salinity increase in the subtropical North Atlantic may have significant implications for ocean circulation changes during the LGM. A large part of the Amazon and Congo Basins are simulated to be substantially drier in the ice age—consistent with many (but not all) paleo data. These results suggest that there are considerable benefits derived from high-resolution model regarding regional climate responses, and that observationalists can now compare their results with models that resolve geography at a resolution comparable to that which the proxy data represent.  相似文献   
103.
In this paper, the method presented by Lee and Trifunac (1985) for generating synthetic torsional accelerograms has been extended to the estimation of synthetic rocking accelerograms and of their response spectra. Results from our previous regression analyses for the characterization of strong shaking in terms of (1) earthquake magnitude and epicentral distance, or (2) Modified Mercalli Intensity at the site are utilized here again. The effects of geologic environment, in terms of site parameters or the representative depth of sediments, which influence amplification, and the dispersive properties of ground motion are also included. The synthetic rocking accelerogram is then constructed from the horizontal and vertical acceleration components.  相似文献   
104.
The change of extreme precipitation is assessed with the HadGEM2-AO - 5 Regional Climate Models (RCMs) chain, which is a national downscaling project undertaken cooperatively by several South Korean institutes aimed at producing regional climate change projection with fine resolution (12.5 km) around the Korean Peninsula. The downscaling domain, resolution and lateral boundary conditions are held the same among the 5 RCMs to minimize the uncertainties from model configuration. Climatological changes reveal a statistically significant increase in the mid-21st century (2046- 2070; Fut1) and the late-21st century (2076-2100; Fut2) precipitation properties related to extreme precipitation, such as precipitation intensity and average of upper 5 percentile daily precipitation, with respect to the reference period (1981-2005). Changes depending on the intensity categories also present a clear trend of decreasing light rain and increasing heavy rain. In accordance with these results, the change of 1-in-50 year maximum precipitation intensity over South Korea is estimated by the GEV method. The result suggests that the 50-year return value (RV50) will change from -32.69% to 72.7% and from -31.6% to 96.32% in Fut1 and from -31.97% to 86.25% and from -19.45% to 134.88% in Fut2 under representative concentration pathway (RCP) 4.5 and 8.5 scenarios, respectively, at the 90% confidence level. This study suggests that multi-RCMs can be used to reduce uncertainties and assess the future change of extreme precipitation more reliably. Moreover, future projection of the regional climate change contains uncertainties evoked from not only driving GCM but also RCM. Therefore, multi-GCM and multi-RCM studies are expected to provide more robust projection.  相似文献   
105.
碎块石土由于块石含量较高,块石粒径较大,其水力学参数的确定具有一定困难。首先,采用双套环法对三峡库区泄滩滑坡的滑体碎块石土饱和渗透系数进行了原位试验,并根据土层孔隙率、颗粒级配等因素采用相关经验公式对试验结果进行了分析。其次,结合使用张力计和体积含水率仪对其土水特征曲线进行了现场模拟试验,并采用Fredlund模型对试验结果进行了拟合分析。最后,根据土水特征曲线和饱和渗透系数,采用经验公式估算了其非饱和渗透系数。试验及分析表明,该滑坡的碎块石土层的饱和渗透系数为(1.78~3.2)×10-2 cm/s,为强渗透性;材料的细颗粒含量越少,有效粒径及控制粒径越大,不均匀系数越小,相应的渗透系数越大。相关研究成果可以为泄滩滑坡非饱和非稳定渗透计算提供参数依据,并对同类型土体非饱和水力学参数的确定具有一定的借鉴意义。  相似文献   
106.
The regional distribution of perceived temperatures (PT) for 28 major weather stations in South Korea during the past 22 years (1983–2004) was investigated by employing a human heat budget model, the Klima-Michel model. The frequencies of a cold stress and a heat load by each region were compared. The sensitivity of PT in terms of the input of synoptic meteorological variables were successfully tested. Seogwipo in Jeju Island appears to be the most comfortable city in Korea. Busan also shows a high frequenc...  相似文献   
107.
Coupled thermo‐hydro‐mechanical‐chemical modelling has attracted attention in past decades due to many contemporary geotechnical engineering applications (e.g., waste disposal, carbon capture and storage). However, molecular‐scale interactions within geomaterials (e.g., swelling and dissolution/precipitation) have a significant influence on the mechanical behaviour, yet are rarely incorporated into existing Thermal‐Hydro‐Mechanical‐Chemical (THMC) frameworks. This paper presents a new coupled hydro‐mechanical‐chemical constitutive model to bridge molecular‐scale interactions with macro‐physical deformation by combining the swelling and dissolution/precipitation through an extension of the new mixture‐coupling theory. Entropy analysis of the geomaterial system provides dissipation energy, and Helmholtz free energy gives the relationship between solids and fluids. Numerical simulation is used to compare with the selected recognized models, which demonstrates that the swelling and dissolution/precipitation processes may have a significant influence on the mechanical deformation of the geomaterials.  相似文献   
108.
Arctic river basins are amongst the most vulnerable to climate change. However, there is currently limited knowledge of the hydrological processes that govern flow dynamics in Arctic river basins. We address this research gap using natural hydrochemical and isotopic tracers to identify water sources that contributed to runoff in river basins spanning a gradient of glacierization (0–61%) in Svalbard during summer 2010 and 2011. Spatially distinct hydrological processes operating over diurnal, weekly and seasonal timescales were characterized by river hydrochemistry and isotopic composition. Two conceptual water sources (‘meltwater’ and ‘groundwater’) were identified and used as a basis for end‐member mixing analyses to assess seasonal and year‐to‐year variability in water source dynamics. In glacier‐fed rivers, meltwater dominated flows at all sites (typically >80%) with the highest contributions observed at the beginning of each study period in early July when snow cover was most extensive. Rivers in non‐glacierized basins were sourced initially from snowmelt but became increasingly dependent on groundwater inputs (up to 100% of total flow volume) by late summer. These hydrological changes were attributed to the depletion of snowpacks and enhanced soil water storage capacity as the active layer expanded throughout each melt season. These findings provide insight into the processes that underpin water source dynamics in Arctic river systems and potential future changes in Arctic hydrology that might be expected under a changing climate. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
109.
Submarine groundwater discharge (SGD) plays an important role in coastal biogeochemical processes and hydrological cycles, particularly off volcanic islands in oligotrophic oceans. However, the spatial and temporal variations of SGD are still poorly understood owing to difficulty in taking rapid SGD measurements over a large scale. In this study, we used four airborne thermal infrared surveys (twice each during high and low tides) to quantify the spatiotemporal variations of SGD over the entire coast of Jeju Island, Korea. On the basis of an analytical model, we found a linear positive correlation between the thermal anomaly and squares of the groundwater discharge velocity and a negative exponential correlation between the anomaly and water depth (including tide height and bathymetry). We then derived a new equation for quantitatively estimating the SGD flow rates from thermal anomalies acquired at two different tide heights. The proposed method was validated with the measured SGD flow rates using a current meter at Gongcheonpo Beach. We believe that the method can be effectively applied for rapid estimation of SGD over coastal areas, where fresh groundwater discharge is significant, using airborne thermal infrared surveys.  相似文献   
110.
Submarine groundwater discharge (SGD) is a global phenomenon that carries large volumes of groundwater and dissolved chemical species such as nutrient, metals, and organic compounds to coastal zones. We report the influence of SGD on the coastal waters of Jeju Island, Korea, using high‐resolution aerial thermal infrared (TIR) mapping techniques and field investigations. An aircraft‐based system was implemented using a cost‐effective TIR camera for aerial TIR mapping. Ground‐based calibrations and system integration with GPS/IMU (global positioning system/inertial measurement unit) were performed for the aerial systems. The aerial surveys showed distinct low‐temperature signatures of SGD along the coasts of Jeju Island, revealing large groundwater inputs from the coastal aquifers to the ocean. Multiple aerial surveys over a range of seasons and tidal stages revealed that SGD rates dynamically affect the sea surface temperature (SST) of the coastal zone. The in‐situ measurements supported that SGD has a substantial influence on the coastal water chemistry as well as SST. Our observations highlight the extent to which aerial‐based TIR mapping can serve as a powerful tool for studying SGD and other coastal processes. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号