首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   307篇
  免费   14篇
  国内免费   3篇
测绘学   10篇
大气科学   40篇
地球物理   73篇
地质学   105篇
海洋学   22篇
天文学   53篇
自然地理   21篇
  2024年   1篇
  2023年   2篇
  2022年   3篇
  2021年   5篇
  2020年   8篇
  2019年   11篇
  2018年   13篇
  2017年   14篇
  2016年   12篇
  2015年   14篇
  2014年   16篇
  2013年   25篇
  2012年   15篇
  2011年   38篇
  2010年   17篇
  2009年   29篇
  2008年   17篇
  2007年   17篇
  2006年   7篇
  2005年   10篇
  2004年   13篇
  2003年   9篇
  2002年   9篇
  2001年   6篇
  1999年   3篇
  1998年   3篇
  1996年   1篇
  1993年   1篇
  1991年   1篇
  1987年   1篇
  1977年   1篇
  1976年   2篇
排序方式: 共有324条查询结果,搜索用时 15 毫秒
11.
BIOSCREEN is a well‐known simple tool for evaluating the transport of dissolved contaminants in groundwater, ideal for rapid screening and teaching. This work extends the BIOSCREEN model for the calculation of stable isotope ratios in contaminants. A three‐dimensional exact solution of the reactive transport from a patch source, accounting for fractionation by first‐order decay and/or sorption, is used. The results match those from a previously published isotope model but are much simpler to obtain. Two different isotopes may be computed, and dual isotope plots can be viewed. The dual isotope assessment is a rapidly emerging new approach for identifying process mechanisms in aquifers. Furthermore, deviations of isotope ratios at specific reactive positions with respect to “bulk” ratios in the whole compound can be simulated. This model is named BIOSCREEN‐AT‐ISO and will be downloadable from the journal homepage.  相似文献   
12.
The filling history of the Níspero deeply buried Lower Cretaceous carbonate reservoir (below 4000 m) from the south part of Gulf of Mexico was studied using a combination of data from petrography, stable isotopes and fluid inclusions and compared with a one-dimensional burial model to derive timing.  相似文献   
13.
Zooplankton assemblages were studied from January 2007 to January 2008 along the salinity gradient of the Charente estuary (France). A Lagrangian survey was performed monthly at five sampling stations defined by salinity (freshwater, 0.5, 5, 15 and 25) in order to collect zooplankton and measure the main environmental parameters (concentrations of suspended particulate matter, particulate organic carbon, chlorophyll a and phaeopigments). A combination of multivariate cluster analysis, species indicator index and canonical correspondence analysis was used to relate the spatio-temporal patterns of the zooplankton assemblages with environmental drivers. The estuary was divided into three different zones by means of environmental parameters while four zooplankton assemblages were identified along the salinity gradient. The Charente estuary appeared as one of the most turbid systems in Europe, with suspended particulate matter (SPM) concentration reaching 3.5 g l−1 in the Maximum Turbidity Zone (MTZ). Algal heterotrophy and microphytobenthos resuspension from the wide mudflats could be responsible for the relatively high chlorophyll a concentrations measured within this MTZ. Salinity and SPM affected significantly the spatial distribution of zooplankton species while temperature and river flow seemed to control their temporal variations. From a zooplanktonic viewpoint, the highly turbid Charente estuary seemed to match an “ecotone–ecocline” model: the succession of species assemblages along the salinity gradient matched the concept of ecocline while the MTZ, which is a stressful narrow area, could be considered as an ecotone. Although such ecoclinal characteristics seemed to be a general feature of estuarine biocenoses, the ecotone could be more system-specific and biological compartment-specific.  相似文献   
14.
Abstract– Particles from comet 81P/Wild 2 were captured with silica aerogel during the flyby Stardust mission. A significant part of the collection was damaged during the impact at hypervelocity in the aerogel. In this study, we conducted impact experiments into aerogel of olivine and pyroxene powder using a light‐gas gun in similar conditions as that of the comet Wild 2 particles collection. The shot samples were investigated using transmission electron microscopy to characterize their microstructure. Both olivine and pyroxene samples show evidence of thermal alteration due to friction with the aerogel. All the grains have rounded edges after collection, whereas their shape was angular in the initial shot powder set. This is probably associated with mass loss of particles. The rims of the grains are clearly melted and mixed with aerogel. The core of olivine grains is fairly well preserved, but some grains contain dislocations in glide configuration. We interpret these dislocations as generated by the thermal stresses that have emerged due to the high temperature gradients between the core and the rim of the grains. Most of the pyroxene grains have been fully melted. Their high silica concentration reflects a strong impregnation with melted aerogel. The preferential melting of pyroxene compared with olivine is due to a difference in melting temperatures of 300°. This melting point difference probably induces a bias in the measurements of the ratio olivine/pyroxene in the Wild 2 comet. The proportion of pyroxene was probably higher on Wild 2 than expected from the samples collected into aerogel.  相似文献   
15.
In order to fulfill the society demand for climate information at the spatial scale allowing impact studies, long-term high-resolution climate simulations are produced, over an area covering metropolitan France. One of the major goals of this article is to investigate whether such simulations appropriately simulate the spatial and temporal variability of the current climate, using two simulation chains. These start from the global IPSL-CM4 climate model, using two regional models (LMDz and MM5) at moderate resolution (15–20 km), followed with a statistical downscaling method in order to reach a target resolution of 8 km. The statistical downscaling technique includes a non-parametric method that corrects the distribution by using high-resolution analyses over France. First the uncorrected simulations are evaluated against a set of high-resolution analyses, with a focus on temperature and precipitation. Uncorrected downscaled temperatures suffer from a cold bias that is present in the global model as well. Precipitations biases have a season- and model-dependent behavior. Dynamical models overestimate rainfall but with different patterns and amplitude, but both have underestimations in the South-Eastern area (Cevennes mountains) in winter. A variance decomposition shows that uncorrected simulations fairly well capture observed variances from inter-annual to high-frequency intra-seasonal time scales. After correction, distributions match with analyses by construction, but it is shown that spatial coherence, persistence properties of warm, cold and dry episodes also match to a certain extent. Another aim of the article is to describe the changes for future climate obtained using these simulations under Scenario A1B. Results are presented on the changes between current and mid-term future (2021–2050) averages and variability over France. Interestingly, even though the same global climate model is used at the boundaries, regional climate change responses from the two models significantly differ.  相似文献   
16.
This study presents an analysis of climate-change impacts on the water resources of two basins located in northern France, by integrating four sources of uncertainty: climate modelling, hydrological modelling, downscaling methods, and emission scenarios. The analysis focused on the evolution of the water budget, the river discharges and piezometric heads. Seven hydrological models were used, from lumped rainfall-discharge to distributed hydrogeological models, and led to quite different estimates of the water-balance components. One of the hydrological models, CLSM, was found to be unable to simulate the increased water stress and was, thus, considered as an outlier even though it gave fair results for the present day compared to observations. Although there were large differences in the results between the models, there was a marked tendency towards a decrease of the water resource in the rivers and aquifers (on average in 2050 about ?14 % and ?2.5 m, respectively), associated with global warming and a reduction in annual precipitation (on average in 2050 +2.1 K and ?3 %, respectively). The uncertainty associated to climate models was shown to clearly dominate, while the three others were about the same order of magnitude and 3–4 times lower. In terms of impact, the results found in this work are rather different from those obtained in a previous study, even though two of the hydrological models and one of the climate models were used in both studies. This emphasizes the need for a survey of the climatic-change impact on the water resource.  相似文献   
17.
Julien Boé 《Climate Dynamics》2013,40(3-4):875-892
How soil moisture affects precipitation is an important question—with far reaching consequences, from weather prediction to centennial climate change—, albeit a poorly understood one. In this paper, an analysis of soil moisture–precipitation interactions over France based on observations is presented. A first objective of this paper is to investigate how large scale circulation modulates soil moisture–precipitation interactions, thanks to a weather regime approach. A second objective is to study the influence of soil moisture not only on precipitation but also on the difference between precipitation and evapotranspiration. Indeed, to have a total positive soil moisture–precipitation feedback, the potential decrease in precipitation associated with drier soils should be larger than the decrease in evapotranspiration that drier soils may also cause. A potential limited impact of soil moisture on precipitation is found for some weather regimes, but its sign depends on large scale circulation. Indeed, antecedent dry soil conditions tend to lead to smaller precipitation for the negative phase of the North Atlantic Oscillation (NAO) regime but to larger precipitation for the Atlantic Low regime. This differential response of precipitation to soil moisture anomalies depending on large scale circulation is traced back to different responses of atmospheric stability. For all circulation regimes, dry soils tend to increase the lifted condensation level, which is unfavorable to precipitation. But for the negative phase of the NAO, low soil moisture tends to lead to an increase of atmospheric stability while it tends to lead to a decrease of stability for Atlantic Low. Even if the impact of soil moisture anomalies varies depending on large scale circulation (it is larger for Atlantic low and the positive phase of the NAO), dry soils always lead to a decrease in evapotranspiration. As the absolute effect of antecedent soil moisture on evapotranspiration is always much larger than its effects on precipitation, for all circulation regimes dry soil anomalies subsequently lead to positive precipitation minus evapotranspiration anomalies i.e. the total soil moisture feedback is found to be negative. This negative feedback is stronger for the Atlantic Low and the positive phase of the NAO regimes.  相似文献   
18.
We show that intermodel variations in the anthropogenically-forced evolution of September sea ice extent (SSIE) in the Arctic stem mainly from two factors: the baseline climatological sea ice thickness (SIT) distribution, and the local climate feedback parameter. The roles of these two factors evolve over the course of the twenty-first century. The SIT distribution is the most important factor in current trends and those of coming decades, accounting for roughly half the intermodel variations in SSIE trends. Then, its role progressively decreases, so that around the middle of the twenty-first century the local climate feedback parameter becomes the dominant factor. Through this analysis, we identify the investments in improved simulation of Arctic climate necessary to reduce uncertainties both in projections of sea ice loss over the coming decades and in the ultimate fate of the ice pack.  相似文献   
19.
Crétat  Julien  Braconnot  Pascale  Terray  Pascal  Marti  Olivier  Falasca  Fabrizio 《Climate Dynamics》2020,55(9-10):2761-2784

The low-frequency evolution of Indian rainfall mean-state and associated interannual-to-decadal variability is discussed for the last 6000 years from a multi-configuration ensemble of fully coupled global transient simulations. This period is marked by a shift of Indian Summer Monsoon Rainfall (ISMR) distribution towards drier conditions, including extremes, and a contraction of the rainy season. The drying is larger in simulations with higher horizontal resolution of the atmosphere and revised land surface hydrology. Vegetation–climate interactions and the way runoff is routed to ocean modulate the timing of the monsoon onset but have negligible effects on the evolution of seasonal rainfall amounts in our modeling framework in which carbon cycling is always active. This drying trend is accompanied by changes in ISMR interannual-to-decadal variability decreasing over north and south India but increasing over central India (20°–25° N). The ISMR interannual-to-decadal variability is decomposed into six physically consistent regimes using a clustering technique to further characterize its changes and associated teleconnections. From 6 to 3.8 kyr bp, the century-to-century modulations in the frequency of occurrence associated to the regimes are asynchronous between the simulations. Orbitally-driven trends can only be detected for two regimes over the whole 6–0 kyr bp period. These two regimes reflect increased influence of ENSO on both ISMR and Indian Ocean Dipole as the inter-hemispheric energy gradient weakens. Severe long-term droughts are also shown to be a combination of long-term drying and internally generated low-frequency modulations of the interannual-to-decadal variability.

  相似文献   
20.
Franchthi Cave, bordering Kiladha Bay, in Greece, is a key archaeological site, due to its long occupation time, from?~?40,000 to?~?5000 year BP. To date, no clear evidence of Neolithic human dwellings in the cave was found, supporting the assumption that Neolithic people may have built a village where there is now Kiladha Bay. During the Neolithic period/Early Holocene, wide areas of the bay were indeed emerged above sea level. Bathymetric and seismic data identified a terrace incised by a valley in?~?1 to 2 m sediment depth. Eight sediment cores, up to 6.3-m-long, were retrieved and analysed using petrophysical, sedimentological, geochemical, and chronostratigraphic methods. The longest core extends into the exposure surface, consisting of a layer of carbonate rubble in a finer matrix, representing weathering processes. Dated organic remains place this unit at?~?8500 cal year BP. It is overlain by stiff silty mud representing an estuarine environment. This mud is capped by reduced sediments with roots marking an exposure surface. A shell-layer, dated to?~?6300 cal year BP, overlies this terrestrial sequence, reflecting the marine transgression. This layer occurs at 10.8 mbsl, 7.7 m deeper than the global sea level at that time, suggesting tectonic subsidence in the area. It is overlain by finer-grained marine carbonate-rich sediments. The top of the core shows traces of eutrophication, pebbles and marine shells, all likely a result of modern anthropogenic processes. These results are interpreted in the context of human occupation: the exposed surface contains pottery sherds, one dating to the Early to Middle Neolithic period, indicating that Neolithic people were present in this dynamic landscape interacting with a migrating coastline. Even if the artefacts are isolated, future investigations of the submerged landscape off Franchthi Cave might lead to the discovery of a Neolithic village, which eventually became buried under marine sediments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号