首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   380篇
  免费   21篇
  国内免费   1篇
测绘学   4篇
大气科学   50篇
地球物理   89篇
地质学   132篇
海洋学   33篇
天文学   42篇
综合类   1篇
自然地理   51篇
  2024年   2篇
  2022年   2篇
  2021年   4篇
  2020年   9篇
  2019年   9篇
  2018年   16篇
  2017年   13篇
  2016年   14篇
  2015年   10篇
  2014年   15篇
  2013年   35篇
  2012年   19篇
  2011年   27篇
  2010年   27篇
  2009年   34篇
  2008年   29篇
  2007年   25篇
  2006年   18篇
  2005年   8篇
  2004年   4篇
  2003年   12篇
  2002年   7篇
  2001年   5篇
  2000年   4篇
  1999年   4篇
  1998年   3篇
  1997年   2篇
  1996年   3篇
  1995年   4篇
  1994年   3篇
  1993年   5篇
  1992年   5篇
  1991年   6篇
  1990年   4篇
  1989年   4篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1985年   2篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
排序方式: 共有402条查询结果,搜索用时 437 毫秒
261.
262.
Spatially explicit burn probability modeling is increasingly applied to assess wildfire risk and inform mitigation strategy development. Burn probabilities are typically expressed on a per-pixel basis, calculated as the number of times a pixel burns divided by the number of simulation iterations. Spatial intersection of highly valued resources and assets (HVRAs) with pixel-based burn probability estimates enables quantification of HVRA exposure to wildfire in terms of expected area burned. However, statistical expectations can mask variability in HVRA area burned across all simulated fires. We present an alternative, polygon-based formulation for deriving estimates of HVRA area burned. This effort enhances investigations into spatial patterns of fire occurrence and behavior by overlaying simulated fire perimeters with mapped HVRA polygons to estimate conditional distributions of HVRA area burned. This information can be especially useful for assessing risks where cumulative effects and the spatial pattern and extent of area burned influence HVRA response to fire. We illustrate our modeling approach and demonstrate application across real-world landscapes for two case studies: first, a comparative analysis of exposure and area burned across ten municipal watersheds on the Beaverhead-Deerlodge National Forest in Montana, USA, and second, fireshed delineation and exposure analysis of a geographically isolated and limited area of critical wildlife habitat on the Pike and San Isabel National Forests in Colorado, USA. We highlight how this information can be used to inform prioritization and mitigation decisions and can be used complementarily with more traditional pixel-based burn probability and fire intensity metrics in an expanded exposure analysis framework.  相似文献   
263.
Media accounts routinely refer to California's Assembly Bill 32 (AB 32), the Global Warming Solutions Act of 2006, as “landmark” climate change legislation. On its surface, this label is an accurate reflection of the state's forward-thinking stance across many environmental issues including pesticides, toxic substances, solid waste, and air quality. For all its promise, however, AB 32 can also be considered a low point in the landscape of conflict between state environmental regulators and California's environmental justice movement. While the legislation included several provisions to address the procedural and distributive dimensions of environmental justice, the implementation of AB 32 has been marked by heated conflict. The most intense conflicts over AB 32 revolve around the primacy of market mechanisms such as “cap and trade.” This article examines the drivers and the manifestations of these dynamics of collaboration and conflict between environmental justice advocates and state regulators, and pays particular attention to the scalar and racialized quality of the neoliberal discourse. The contentiousness of climate change politics in California offers scholars and practitioners around the world a cautionary tale of how the best intentions for integrating environmental justice principles into climate change policy do not necessarily translate into implementation and how underlying racialized fractures can upend collaboration between state and social movement actors.  相似文献   
264.
Since 2002, the usually uncommon endemic filamentous brown alga Hincksia sordida (Harvey) Silva (Ectocarpales, Phaeophyta) has formed nuisance blooms annually during spring/early summer at Main Beach, Noosa on the subtropical east Australian coast. The Hincksia bloom coincides with the normally intensive recreational use of the popular bathing beach by the local population and tourists. The alga forms dense accumulations in the surf zone at Main Beach, giving the seawater a distinct brown coloration and deterring swimmers from entering the water. Decomposing algae stranded by receding tides emit a nauseating sulphurous stench which hangs over the beach. The stranded algal biomass is removed from the beach by bulldozers. During blooms, the usually crowded Main Beach is deserted, bathers preferring to use the many unaffected beaches on the Sunshine Coast to the south of Main Beach. The bloom worsens with north-easterly winds and is cleared from Noosa by south easterly winds, observations which have prompted the untenable proposal by local authorities that the bloom is forming offshore of Fraser Island in the South Pacific Ocean. The Noosa River estuarine system/Laguna Bay is the more probable source of the bloom and the nutrient inputs into this system must be substantial to generate the high bloom biomass. Current mitigation procedures of removing the blooming alga off the beach with bulldozers treat the symptom, not the cause and are proving ineffective. Environmental management must be based on science and the Noosa bloom would benefit greatly from the accurate ecological data on which to base management options.  相似文献   
265.
Rapid Pb-Pb dating of natural rutile crystals by laser ablation multiple-collector inductively coupled plasma mass spectrometry (LA-MC-ICPMS) is investigated as a tool for constraining geological temperature-time histories. LA-MC-ICPMS was used to analyse Pb isotopes in rutile from granulite-facies rocks from the Reynolds Range, Northern Territory, Australia. The resultant ages were compared with previous U-Pb zircon and monazite age determinations and new mica (muscovite, phlogopite, and biotite) Rb-Sr ages from the same metamorphic terrane. Rutile crystals ranging in size from 3.5 to 0.05 mm with ?20 ppm Pb were ablated with a 300-25 μm diameter laser beam. Crystals larger than 0.5 mm yielded sufficiently precise 206Pb/204Pb and 207Pb/204Pb ratios to correct for the presence of common Pb, and individual rutile crystals often exhibited sufficient Pb isotopic heterogeneity to allow isochron calculations to be performed on replicate analyses of a single crystal. The mean of 12 isochron ages is 1544 ± 8 Ma (2 SD), with isochron ages for single crystals having uncertainties as low as ±1.3 Myr (2 SD). The 207Pb-206Pb ages calculated without correction for common Pb are typically <0.5% higher than the common-Pb-corrected isochron ages reflecting the very minor amounts of common Pb present in the rutile. The LA-MC-ICPMS method described samples only the outer 0.1-0.2 mm of the rutile crystals, resulting in a grain size-independent apparent closure temperature (Tc) for Pb diffusion in rutile that is less than the Tc of monazite ?0.1 mm in diameter, but significantly higher than the Rb-Sr system in muscovite (550 °C), phlogopite (435 °C) and biotite (400 °C). Even small rutile crystals are extremely resistant to isotopic resetting. For the established slow cooling rate of ca. 3 °C/Myr, the Tc for Pb diffusion in the analysed rutile is ca. 630 °C. This is in excellent agreement with recent experimental results that indicate that rutile has a higher Tc than previously thought (ca. 600-640 °C for rutile 0.1-0.2 mm diameter cooled at 3 °C/Myr; near 600 °C [Cherniak D.J., 2000. Pb diffusion in rutile. Contrib. Mineral. Petrol. 139, 198-207], versus 400 °C [Mezger, K., Hanson G.N., Bohlen S.R., 1989a. High precision U-Pb ages of metamorphic rutile: applications to the cooling history of high-grade terranes. Earth Planet. Sci. Lett. 96, 106-118.] for 1 °C/Myr), and with current Tc estimates for monazite and other high temperature geochronometers, which have been revised upwards in recent years. The new rutile ages, together with the other geochronological data from the region, support the interpretation that the Reynolds Range underwent prolonged slow cooling on a conductive geotherm, under nearly steady-state conditions. Slow cooling at ca. 3 °C/Myr persisted for at least 40 Myr followed the peak of high-T/low-P metamorphism to granulite-facies conditions, and probably continued at ca. 2-3 °C/Myr for ca. 200 Myr overall.  相似文献   
266.
The eruptive plumes and large heat flow (~15 GW) observed by Cassini in the South Polar Region of Enceladus may be expressions of hydrothermal activity inside Enceladus. We hypothesize that a subsurface ocean is the heat reservoir for thermal anomalies on the surface and the source of heat and chemicals necessary for the plumes. The ocean is believed to contain dissolved gases, mostly CO2 and is found to be relatively warm (~0 °C). Regular tidal forces open cracks in the icy crust above the ocean. Ocean water fills these fissures. There, the conditions are met for the upward movement of water and the dissolved gases to exsolve and form bubbles, lowering the bulk density of the water column and making the pressure at its bottom less than that at the top of the ocean. This pressure difference drives ocean water into and up the conduits toward the surface. This transportation mechanism supports the thermal anomalies and delivers heat and chemicals to the chambers from which the plumes erupt. Water enters these chambers and there its bubbles pop and loft an aerosol mist into the ullage. The exiting plume gas entrains some of these small droplets. Thus, nonvolatile chemical species in ocean water can be present in the plume particles. A CO2 equivalent-gas molar fraction of ~4 × 10?4 for the ocean is sufficient to support the circulation. A source of heat is needed to keep the ocean warm at ~0 °C (about two degrees above its freezing point). The source of heat is unknown, but our hypothesis is not dependent on any particular mechanism for producing the heat.  相似文献   
267.
Climate and vegetation: Simulating the African humid period   总被引:1,自引:0,他引:1  
The outputs of the climate simulated by two General Circulation Models (GCMs), (IPSL and UGAMP) have been used to force a vegetation model (LPJ-GUESS) to analyze the Holocene African humid period (AHP) and related vegetation changes over the 18°W-35°E, 5°S-25°N region. At the continental scale, simulations with the two models confirm the intensified African monsoon during the Holocene as compared to now, and the early but gradual termination of the AHP in eastern regions as compared to western regions. At the regional scale, the two GCMs results present important differences in the timing of the AHP, its spatial extent and the summer rainfall amplitude. Consequently, the vegetation model simulates changes that are globally in agreement with pollen data, but with large differences according to the region and the model considered. During the AHP, the IPSL climate induced proper vegetation changes in the eastern Sahara and in the Sahel, whereas the UGAMP climate induced correct changes in the western Sahara and in the equatorial zone.  相似文献   
268.
Sr isotope data from soils, water, and atmospheric inputs in a small tropical granitoid watershed in the Luquillo Mountains of Puerto Rico constrain soil mineral development, weathering fluxes, and atmospheric deposition. This study provides new information on pedogenic processes and geochemical fluxes that is not apparent in watershed mass balances based on major elements alone. 87Sr/86Sr data reveal that Saharan mineral aerosol dust contributes significantly to atmospheric inputs. Watershed-scale Sr isotope mass balance calculations indicate that the dust deposition flux for the watershed is 2100 ± 700 mg cm−2 ka−1. Nd isotope analyses of soil and saprolite samples provide independent evidence for the presence of Saharan dust in the regolith. Watershed-scale Sr isotope mass balance calculations are used to calculate the overall short-term chemical denudation velocity for the watershed, which agrees well with previous denudation rate estimates based on major element chemistry and cosmogenic nuclides. The dissolved streamwater Sr flux is dominated by weathering of plagioclase and hornblende and partial weathering of biotite in the saprock zone. A steep gradient in regolith porewater 87Sr/86Sr ratio with depth, from 0.70635 to as high as 0.71395, reflects the transition from primary mineral-derived Sr to a combination of residual biotite-derived Sr and atmospherically-derived Sr near the surface, and allows multiple origins of kaolinite to be identified.  相似文献   
269.
270.
The melt inclusion record from the rhyolitic Kos Plateau Tuff (Aegean Arc)   总被引:1,自引:1,他引:0  
The >60 km3 rhyolitic Kos Plateau Tuff provides an exceptional probe into the behavior of volatile components in highly evolved arc magmas: it is crystal-rich (30–40 vol% crystals), was rapidly quenched by the explosive eruptive process, and contains abundant homogeneous melt inclusions in large quartz crystals. Several methods for measuring major, trace and volatile element concentrations (SIMS, FTIR, Raman spectroscopy, electron microprobe, LA–ICPMS) were applied to these melt inclusions. We found a ~2 wt% range of H2O contents (4.5–6.5 wt% H2O, measured independently by SIMS, FTIR, and Raman spectroscopy) and relatively low CO2 concentrations (15–140 ppm measured by FTIR, with most analyses <100 ppm). No obvious correlations between H2O, CO2, major and trace elements are observed. These observations require a complex, protracted magma evolution in the upper crust that included: (1) vapor-saturated crystallization in a chamber located between 1.5 and 2.5 kb pressure, (2) closed-system degassing (with up to 10 vol% exsolved gas) as melts percolated upwards through a vertically extensive mush zone (2–4 km thick), and (3) periodic gas fluxing from subjacent, more mafic and more CO2-rich magma, which is preserved as andesite bands in pumices. These processes can account for the range of observed H2O and CO2 values and the lack of correlation between volatiles and trace elements in the melt inclusions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号