首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   193篇
  免费   6篇
  国内免费   2篇
大气科学   11篇
地球物理   31篇
地质学   57篇
海洋学   22篇
天文学   63篇
综合类   2篇
自然地理   15篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   2篇
  2019年   4篇
  2018年   4篇
  2017年   9篇
  2016年   5篇
  2015年   7篇
  2014年   7篇
  2013年   12篇
  2012年   13篇
  2011年   18篇
  2010年   5篇
  2009年   13篇
  2008年   13篇
  2007年   14篇
  2006年   14篇
  2005年   16篇
  2004年   9篇
  2003年   5篇
  2002年   4篇
  2001年   3篇
  2000年   1篇
  1999年   1篇
  1998年   3篇
  1997年   1篇
  1996年   2篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
  1992年   4篇
  1989年   1篇
  1985年   2篇
排序方式: 共有201条查询结果,搜索用时 62 毫秒
131.
We study the planar central configurations of the 1 +n body problem where one mass is large and the other n masses are infinitesimal and equal. We find analytically all these central configurations when 2≤n≤4. Numerically, first we provide evidence that when n9 the only central configuration is the regular n-gon with the large mass in its barycenter, and second we provide also evidence of the existence of an axis of symmetry for every central configuration. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
132.
In order to enhance our understanding of the possible influence of meteor ablation on the enrichment in OH and O2 of the lower thermosphere we studied intense Leonid meteor activity by using the SATI (Spectral Airglow Temperature Imager) interferometer of the Instituto de Astrofísica de Andalucía. We measured the emission rate and rotational temperature of OH and O2 airglow emission layers during two observation periods of high meteoric activity: the 1998 Leonid outburst and the 2002 Leonid storm. The results show that there is not a clear relation of O2 and OH airglow emission and rotational temperature with meteoric activity.  相似文献   
133.
Much work has been done taking into account the possibility that the gravitational constant G may vary with cosmological time t (or with the cosmological scale factor a(t)). The same may be said about the speed of light c. We present here two important remarks on these subject. These remarks include G(t) and c(t) varying with time with the restriction 8πG/c 4=constant.  相似文献   
134.
135.
Our examination of nine CM chondrites that span the aqueous alteration sequence leads us to conclude that compact dark fine mantles surrounding chondrules and inclusions in CM chondrites are not discrete fine-grained rims acquired in the solar nebula as modeled by Metzler et al. [Accretionary dust mantles in CM chondrites: evidence for solar nebula processes. Geochim. Cosmochim. Acta56, 1992, 2873-2897]. Nebular processes that lead to agglomeration produce materials with porosities far higher than those in the dark mantles. We infer that the mantles were produced from porous nebular materials on the CM parent asteroid by impact-compaction (a process that produces the lowest porosity adjacent to chondrules and inclusions). Compaction was followed by aqueous alteration that formed tochilinite, serpentine, Ni-bearing sulfide, and other secondary products in voids in the interchondrule regions. Metzler et al. reported a correlation between mantle thickness and the radius of the enclosed object. In Yamato 791198 we find no correlation when all sizes of central objects and dark lumps are included but a significant correlation (r2 = 0.44) if we limit consideration to central objects with radii >35 μm; a moderate correlation is also found in QUE 97990. We suggest that impact-induced shear of a plum-pudding-like precursor produced the observed “mantles”; these were shielded from comminution during impact events by the adjacent stronger chondrules and inclusions. Some mantles in CM chondrites with low degrees of alteration show distinct layers that may largely reflect differences in porosity. Typically, a gray, uniform inner layer is surrounded by an outer layer consisting of darker silicates with BSE-bright speckles. The CM-chondrite objects characterized as “primary accretionary rocks” by Metzler et al. did not form in the nebula, but rather on the parent body. The absence of solar-flare particle tracks and solar-wind-implanted rare gases in these clasts reflect their lithified nature and low surface/volume ratios during the period when they resided in the regolith and were subject to irradiation by solar particles. The clasts are analogous to the light-colored metamorphosed clasts in ordinary-chondrite regolith breccias (which also lack solar-flare particle tracks and solar-wind gas).  相似文献   
136.
Given the relevance of desert aerosols to environmental issues such as dust storms, climate change and human health effects, we provide a demonstration of how the bedrock geology of an arid area influences the mineralogy and geochemistry of even the finest particulate matter (i.e., the inhalable fraction <10 μm in size: PM10). PM10 samples extracted from desert sediments at geologically contrasting off-road sites in central and southeastern Australia (granitic, high grade metamorphic, quartzitic sandstone) were analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM), inductively coupled plasma atomic emission spectrometry (ICP-AES) and inductively coupled plasma mass spectrometry (ICP-MS). The “granitic” PM10 are highly alkali feldspathic and illitic, with a wide range of accessory minerals including rutile (TiO2), monazite [(Ce, La, Nd, Th, Y) PO4], xenotime (YPO4), apatite [Ca5(PO4)3 (F, OH, Cl)], hematite (Fe3O4), zircon (ZrSiO4) and thorite (ThSiO4). This mineralogy is reflected in the geochemistry which shows notable enrichments in rare earth elements (REE) and most high field strength elements (both held in the accessory minerals), and higher than normal levels of low (<2.0) ionic potential elements (Na, K, Li, Cs, Rb: held in alkali feldspar and illite). The “metamorphic” resuspended PM10 define a mineralogy clearly influenced by local exposures of pelitic and calc-silicate schists (sillimanite, muscovite, calcite, Ca-amphibole), a dominance of monazite over other REE-bearing phases, and a geochemistry distinguished by enrichments in alkaline earth metals (Ca, Mg, Ba, Sr) and depletion in heavy REE. The “quartzite” PM10, derived from rocks already recycled by Precambrian erosion and sedimentary transport, show a sedimentologically mature mineralogy of mostly quartz and kaolinite, detrital accessory ilmenite, rutile, monazite and hematite, and the strongest geochemical depletion (especially K, Rb, Cs, Na, Ca, Mg, Ba).  相似文献   
137.
Using high-resolution, low-scan-rate, all-sky CCD cameras and high-level CCD video cameras, the SPanish Meteor and fireball Network (SPMN) recorded the 2007 κ Cygnid fireball outburst from several observing stations. Here, accurate trajectory, radiant and orbital data obtained for the κ Cygnid meteor are presented. The typical astrometric uncertainty is 1–2 arcmin, while velocity determination errors are of the order of 0.3–0.6 km s−1, though this depends on the distance of each event to the station and its particular viewing geometry. The observed orbital differences among 1993 and 2007 outbursts support the hypothesis that the formation of this meteoroid stream is a consequence of the fragmentation of a comet nucleus. Such disruptive process proceed as a cascade, where the break up of the progenitor body leads to produce small remnants, some fully disintegrate into different clumps of particles and other remaining as dormant objects such as 2008ED69, 2001MG1 and 2004LA12 which are now observed as near-Earth asteroids. In addition to the orbital data, we present a unique spectrum of a bright  κ  Cygnid fireball revealing that the main rocky components have chondritic abundances, and estimations of the tensile strength of those fireballs that exhibited a catastrophic disruption behaviour. All this evidence of the structure and composition of the κ Cygnid meteoroids is consistent with being composed by fine-grained materials typically released from comets.  相似文献   
138.
We consider a restricted three-body problem consisting of two positive equal masses m 1 = m 2 moving, under the mutual gravitational attraction, in a collision orbit and a third infinitesimal mass m 3 moving in the plane P perpendicular to the line joining m 1 and m 2. The plane P is assumed to pass through the center of mass of m 1 and m 2. Since the motion of m 1 and m 2 is not affected by m 3, from the symmetry of the configuration it is clear that m 3 remains in the plane P and the three masses are at the vertices of an isosceles triangle for all time. The restricted planar isosceles three-body problem describes the motion of m 3 when its angular momentum is different from zero and the motion of m 1 and m 2 is not periodic. Our main result is the characterization of the global flow of this problem.  相似文献   
139.
Abstract— The fall of the Puerto Lápice eucrite occurred on May 10, 2007, at 17 h 57 m 30 ± 30 s UTC. Its daylight fireball was witnessed by hundreds of people from Spain, and produced a meteorite fall associated with a large strewn field of fragments. There were no direct pictures of the fireball, but several pictures of the fireball's train were taken from different locations in Spain. Additional theodolite calibrations of visual records were made in order to find the most probable fireball trajectory based on the available data. The shape of the meteorite strewn field was considered as well. Although the orbit of the Puerto Lápice meteoroid could not be computed due to the absence of velocity data, we assumed a likely range of geocentric velocities and computed a range of possible orbits. All solutions show that the body was in an Apollo‐type orbit, with low inclination and perihelion distance just below 1 astronomical unit (AU). This is the first case that an orbit can be discussed for an HED meteorite fall.  相似文献   
140.
Full waveform inversion (FWI) is one of the most challenging procedures to obtain quantitative information of the subsurface. For elastic inversions, when both compressional and shear velocities have to be inverted, the algorithmic issue becomes also a computational challenge due to the high cost related to modelling elastic rather than acoustic waves. This shortcoming has been moderately mitigated by using high-performance computing to accelerate 3D elastic FWI kernels. Nevertheless, there is room in the FWI workflows for obtaining large speedups at the cost of proper grid pre-processing and data decimation techniques. In the present work, we show how by making full use of frequency-adapted grids, composite shot lists and a novel dynamic offset control strategy, we can reduce by several orders of magnitude the compute time while improving the convergence of the method in the studied cases, regardless of the forward and adjoint compute kernels used.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号