首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   189篇
  免费   5篇
  国内免费   8篇
测绘学   2篇
大气科学   19篇
地球物理   39篇
地质学   52篇
海洋学   72篇
天文学   12篇
综合类   5篇
自然地理   1篇
  2022年   3篇
  2021年   10篇
  2020年   4篇
  2019年   6篇
  2018年   8篇
  2017年   10篇
  2016年   10篇
  2015年   7篇
  2014年   8篇
  2013年   14篇
  2012年   16篇
  2011年   19篇
  2010年   14篇
  2009年   9篇
  2008年   7篇
  2007年   13篇
  2006年   10篇
  2005年   14篇
  2004年   4篇
  2003年   5篇
  2002年   4篇
  2000年   1篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1989年   1篇
排序方式: 共有202条查询结果,搜索用时 15 毫秒
21.
Toxicity of heavy metals adversely affects environment and human health. Organic materials derived from natural matters or wastes have been applied to soils to reduce the mobility of contaminants such as heavy metals. However, the application of cow bone powder (CB), biochar (BC), and eggshell powder (ES) is rarely investigated for the reduction of Pb bioavailability in soils irrigated with saline water. The objective of this study was to assess the effectiveness of CB, BC, and ES additions as immobilizing substances on Pb bioavailability in shooting range soil irrigated with deionized and saline water. Each additive of CB, BC, and ES at 5 % (w/w) was mixed with soils and then the deionized and saline water were irrigated for 21 days. With deionized water irrigation, the soils treated with CB, BC, and ES exhibited higher pH when compared with saline water irrigation. With saline water irrigation, the electrical conductivity, water-soluble anions, and cations were significantly increased in soils treated with CB, BC, and ES. The water-soluble Pb in soils treated with CB, BC, and ES was significantly decreased with saline water irrigation. On the other hand, the water-soluble Pb in soil treated with CB was increased with deionized water irrigation. Only BC with saline water irrigation decreased the Pb concentration in maize shoots.  相似文献   
22.
Because of the risk of diminishing supplies of rare earth elements (REEs) worldwide due to China’s dominance over REE supply, the necessity of developing domestic resources of REE has been realized in other countries. To explore new ore bodies, a geochemical survey was conducted at one existing carbonatite REE deposit in the Hongcheon area of Korea. Proper sampling strategies and baseline data for the interpretation of the results were determined through a pilot study conducted in the area. Enrichment in the concentration of light REE (LREE) over that of heavy REE, which is typical in carbonatite-type deposits, was observed in stream sediments and heavy mineral samples collected during the geochemical survey. Maximum concentrations of LREE were 2,299 and 27,798 mg/kg for stream sediments and heavy minerals, respectively. Among LREEs, La and Ce are the dominant components of all REEs, comprising approximately 68 % of mean concentrations. Considering the distribution pattern of La + Ce contents and the associations with the existing outcropping ore bodies, the zone of prospective REE mineralization was determined to be in the south-western part of the area. A detailed follow-up soil survey of the zone found even higher concentrations of La and Ce (2,450 and 3,100 mg/kg, respectively), and suggested the possible extension of the existing ore bodies. Likewise, a systematic geochemical survey for REE is feasible for locating concealed ore bodies in the area, where the mineralization is mostly covered with soil, and rock outcrops are scarce.  相似文献   
23.
Snowmelt-runoff modelling in a mountainous basin is perceived as difficult due to the complexity of simulation. Theoretically, the snowmelt process should be influenced by temperature changes. It is still controversial as how to incorporate the temperature changes into the snowmelt-runoff model in a mountainous basin. This paper presents the results of a study in the North Fork American River basin where the snowmelt-runoff mechanism is modelled by relating the temperature changes to the elevation band in the basin. In this study, a distributed hydrologic model is used to explore the orographic effects on the snowmelt-runoff using the snowfall-snowmelt routine in Soil and Water Assessment Tool (SWAT). Three parameters, namely maximum snowmelt factor, minimum snowmelt factor, and snowpack temperature lag were analysed during the simulation. The model was validated using streamflow data from October 1, 1991 to September 30, 1994 with and without considering the elevation band. The result of this study suggests that the snowmelt-runoff model associated with the elevation band better represents the snowmelt-runoff mechanism in terms of Nash–Sutcliffe coefficient (E NS ), R 2, and Root Mean Square Error (RMSE).  相似文献   
24.
Snow algae in a 45.97-m-long ice core from the Tyndall Glacier (50°59′05″S, 73°31′12″W, 1756 m a.s.l.) in the Southern Patagonian Icefield were examined for potential use in ice core dating and estimation of the net accumulation rate. The core was subjected to visual stratigraphic observation and bulk density measurements in the field, and later to analyses of snow algal biomass, water isotopes (18O, D), and major dissolved ions. The ice core contained many algal cells that belonged to two species of snow algae growing in the snow near the surface: Chloromonas sp. and an unknown green algal species. Algal biomass and major dissolved ions (Na+, K+, Mg2+, Ca2+, Cl, SO42−) exhibited rapid decreases in the upper 3 m, probably owing to melt water elution and/or decomposition of algal cells. However, seasonal cycles were still found for the snow algal biomass, 18O, D-excess, and major ions, although the amplitudes of the cycles decreased with depth. Supposing that the layers with almost no snow algae were the winter layers without the melt water essential to algal growth, we estimated that the net accumulation rate at this location was 12.9 m a− 1 from winter 1998 to winter 1999, and 5.1 m from the beginning of winter to December 1999. These estimates are similar to the values estimated from the peaks of 18O (17.8 m a− 1 from summer 1998 to summer 1999 and 11.0 m from summer to December 1999) and those of D-excess (14.7 m a− 1 from fall 1998 to fall 1999 and 8.6 m a− 1 from fall to December 1999). These values are much higher than those obtained by past ice core studies in Patagonia, but are of the same order of magnitude as those predicted from various observations at ablation areas of Patagonian glaciers.  相似文献   
25.
Cosmological shock waves are induced during hierarchical formation of large-scale structure in the universe. Like most astrophysical shocks, they are collisionless, since they form in the tenuous intergalactic medium through electromagnetic viscosities. The gravitational energy released during structure formation is transferred by these shocks to the intergalactic gas as heat, cosmic-rays, turbulence, and magnetic fields. Here we briefly described the properties and consequences of the shock waves in the context of the large-scale structure of the universe.  相似文献   
26.
We have reanalyzed the high-resolution spectrum of Titan between 2.87 and 3.12 μm observed with NIRSPEC/Keck II on 2001 Nov. 21 in southern summer, using updated CH3D and C2H6 line-by-line models. From new synthetic spectra, we identify all but a few of the previously unidentified significant absorption spectral features in this wavelength range as due to these two species, both of which had been previously detected by Voyager and ground-based observations at other wavelengths. We also derive opacities and reflectivities of haze particles as functions of altitude for the 2.87-2.92 μm wavelength range, where Titan's atmosphere is partially transparent down to the surface. The extinction per unit altitude is observed to increase from 100 km (∼8 mbar) toward lower altitude. The derived total optical depth is approximately 1.1 for the 2.87-2.92 μm range. At wavelengths increasing beyond 2.92 μm the haze layers become much more optically thick, and the surface is rapidly hidden from view. These conclusions apply to equatorial and southern-temperate regions on Titan, excluding polar regions. We also find it unlikely that there is a large enhancement of the tropospheric CH4 mole fraction over the value reported from analysis of the Huygens/GCMS observations.  相似文献   
27.
Evapotranspiration (ET) is one of the major water exchange processes between the earth's surface and the atmosphere. ET is a combined process of evaporation from open water bodies, bare soil and plant surfaces, and transpiration from vegetation. Remote sensing-based ET models have been developed to estimate spatially distributed ET over large regions, however, many of them reportedly underestimate ET over semi-arid regions (Jamshidi et al., Journal of Hydrometeorology, 2019, 20, 947–964). In this work, we show that underestimation of ET can occur due to the open water evaporation from flooded rice paddies ignored in the existing ET models. To address the gap in ET estimation, we have developed a novel approach that accounts for the missing ET component over flooded rice paddies. Our method improved ET estimates by a modified Penman-Monteith algorithm that considered the fraction of open water evaporation from flooded rice paddies. Daily ET was calculated using ground based meteorological data and the MODIS satellite data over the Krishna River Basin. Seasonal and annual ET values over the Krishna Basin were compared with two different ET algorithms. ET estimates from these two models were also compared for different crop combinations. Results were validated with flux tower-based measurements from other studies. We have identified a 17 mm/year difference in average annual ET over the Krishna River Basin with this new ET algorithm. This is very critical in basin scale water balance analysis and water productivity studies.  相似文献   
28.
Understanding the isotopic composition of precipitation in a forested catchment is critical for ecohydrological studies. Changes in the water isotopes of rainfall were assessed during its passage through the canopy in throughfall, and the effect of different forest stands on the isotope composition of throughfall. In a cool temperate forest in Korea, rainfall and throughfall samples collected under Pinus densiflora (red pine), Castanea crenata (chestnut), Robinia pseudoacacia (black locust) and mixed stands (mix of these three species) were analysed for oxygen and hydrogen isotopes. Throughfall δ18O and δD were enriched compared to rainfall. A difference of δ18O and δD among throughfall may be related to the difference in interception–storage capacity of different species due to dissimilar canopy characteristics. Since isotopic composition of throughfall and rainfall are different due to canopy isotopic effects, use of rainfall isotopic signatures for ecohydrological studies in forested ecosystem can lead to biases.  相似文献   
29.
To simulate the seismic signals that are obtained in a marine environment, a coupled system of both acoustic and elastic wave equations is solved. The acoustic wave equation for the fluid region simulates the pressure field while minimizing the number of degrees of freedom of the impedance matrix, and the elastic wave equation for the solid region simulates several elastic events, such as shear waves and surface waves. Moreover, by combining this coupled approach with the waveform inversion technique, the elastic properties of the earth can be inverted using the pressure data obtained from the acoustic region. However, in contrast to the pure acoustic and elastic cases, the complex impedance matrix for the coupled media does not have a symmetric form because of the boundary (continuity) condition at the interface between the acoustic and elastic elements. In this study, we propose a manipulation scheme that makes the complex impedance matrix for acoustic–elastic coupled media to take a symmetric form. Using the proposed symmetric matrix, forward and backward wavefields are identical to those generated by the conventional approach; thus, we do not lose any accuracy in the waveform inversion results. However, to solve the modified symmetric matrix, LDLT factorization is used instead of LU factorization for a matrix of the same size; this method can mitigate issues related to severe memory insufficiency and long computation times, particularly for large‐scale problems.  相似文献   
30.
1. Introduction In recent decades, extreme weather events seem to be growing in frequency and risk due to water-related disasters. According to the World Meteorological Or- ganization report (ISDR and WMO, 2004) on World Water Day, 22 March 2004, the economic losses caused by water-related disasters, including floods, droughts and tropical cyclones, are on an increasing trend as follows: the yearly mean in the 1970s was about 131 billion US dollars, 204 billion dollars in the 1980s, and …  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号