首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   704篇
  免费   38篇
  国内免费   3篇
测绘学   24篇
大气科学   53篇
地球物理   153篇
地质学   254篇
海洋学   67篇
天文学   115篇
综合类   2篇
自然地理   77篇
  2021年   9篇
  2020年   10篇
  2019年   10篇
  2018年   20篇
  2017年   17篇
  2016年   18篇
  2015年   16篇
  2014年   21篇
  2013年   40篇
  2012年   31篇
  2011年   39篇
  2010年   30篇
  2009年   48篇
  2008年   48篇
  2007年   45篇
  2006年   33篇
  2005年   28篇
  2004年   28篇
  2003年   31篇
  2002年   22篇
  2001年   18篇
  2000年   16篇
  1999年   10篇
  1998年   11篇
  1997年   6篇
  1996年   10篇
  1995年   7篇
  1994年   6篇
  1993年   12篇
  1992年   3篇
  1991年   3篇
  1990年   7篇
  1989年   3篇
  1988年   5篇
  1985年   8篇
  1984年   3篇
  1982年   2篇
  1981年   6篇
  1980年   7篇
  1979年   4篇
  1978年   3篇
  1977年   2篇
  1975年   8篇
  1974年   5篇
  1973年   6篇
  1972年   4篇
  1971年   5篇
  1970年   2篇
  1968年   5篇
  1967年   2篇
排序方式: 共有745条查询结果,搜索用时 625 毫秒
81.
Palaeomagnetic pole positions have been determined for a collection of igneous rocks, comprising nearly five hundred samples, from the Cape Verde Islands of Santa Antao, Sao Vicente, Sao Nicolao and Sao Tiago. Limited data from the islands of Sal, Maio and Fogo are also presented. Stratigraphic control suggusts that the lavas are overwhelmingly Miocene in age on Sao Tiago and Sao Nicolao. Similarity in the palaeomagnetic pole positions indicates that Miocene lavas are also dominant on Santa Antao and Sao Vicente.
Substantial areas within two of the islands are of reversed polarity only, suggesting either a rapid extrusion rate, or the existence of a long reversed polarity epoch during the Miocene period. The palaeomagnetic pole positions for each island are close to the present geographic pole, excluding the possibility of Post-Miocene differential crustal spreading (or rotation about a vertical axis) in this part of the Atlantic. The palaeomagnetic pole position for the entire survey is consistent with the Miocene geographic pole being removed from, but close to, the present geographic pole; and is in harmony with the European polar wandering curve.  相似文献   
82.
83.
84.
We present luminosity and surface-brightness distributions of 40 111 galaxies with K -band photometry from the United Kingdom Infrared Telescope (UKIRT) Infrared Deep Sky Survey (UKIDSS) Large Area Survey (LAS), Data Release 3 and optical photometry from Data Release 5 of the Sloan Digital Sky Survey (SDSS). Various features and limitations of the new UKIDSS data are examined, such as a problem affecting Petrosian magnitudes of extended sources. Selection limits in K - and r -band magnitude, K -band surface brightness and K -band radius are included explicitly in the  1/ V max  estimate of the space density and luminosity function. The bivariate brightness distribution in K -band absolute magnitude and surface brightness is presented and found to display a clear luminosity–surface brightness correlation that flattens at high luminosity and broadens at low luminosity, consistent with similar analyses at optical wavelengths. Best-fitting Schechter function parameters for the K -band luminosity function are found to be   M *− 5 log  h =−23.19 ± 0.04, α=−0.81 ± 0.04  and  φ*= (0.0166 ± 0.0008)  h 3 Mpc−3  , although the Schechter function provides a poor fit to the data at high and low luminosity, while the luminosity density in the K band is found to be   j = (6.305 ± 0.067) × 108 L  h  Mpc−3  . However, we caution that there are various known sources of incompleteness and uncertainty in our results. Using mass-to-light ratios determined from the optical colours, we estimate the stellar mass function, finding good agreement with previous results. Possible improvements are discussed that could be implemented when extending this analysis to the full LAS.  相似文献   
85.
86.
We observed near-Earth asteroid (NEA) 2100 Ra-Shalom over a six-year period, obtaining rotationally resolved spectra in the visible, near-infrared, thermal-infrared, and radar wavelengths. We find that Ra-Shalom has an effective diameter of Deff=2.3±0.2 km, rotation period P=19.793±0.001 h, visual albedo pv=0.13±0.03, radar albedo , and polarization ratio μc=0.25±0.04. We used our radar observations to generate a three-dimensional shape model which shows several structural features of interest. Based on our thermal observations, Ra-Shalom has a high thermal inertia of ∼103 J m−2 s−0.5 K−1, consistent with a coarse or rocky surface and the inferences of others [Harris, A.W., Davies, J.K., Green, S.F., 1998. Icarus 135, 441-450; Delbo, M., Harris, A.W., Binzel, R.P., Pravec, P., Davies, J.K., 2003. Icarus 166, 116-130]. Our spectral data indicate that Ra-Shalom is a K-class asteroid and we find excellent agreement between our spectra and laboratory spectra of the CV3 meteorite Grosnaja. Our spectra show rotation-dependent variations consistent with global variations in grain size. Our radar observations show rotation-dependent variations in radar albedo consistent with global variations in the thickness of a relatively thin regolith.  相似文献   
87.
During its close Earth approach in 2001, the E-class near-Earth Asteroid (33342) 1998 WT24 was the focus of extensive radar, optical, and thermal infrared observations. We present a physical model of this object, estimated from Arecibo and Goldstone radar images that cover multiple rotations and span over 100° of sky motion. The asteroid has an equivalent diameter of 415±40 m and a diffuse radar scattering law that is identical in both senses of circular polarization, implying a surface that is extremely rough on centimeter-to-decimeter scales. The shape is dominated by three large basins, which may be impact craters or a relic of past dynamical disruption of the object. Analysis of YORP perturbations on WT24's spin state predicts that the asteroid's spin rate is decreasing at a rate of . Simply extrapolating this rate suggests that the asteroid will despin over the next 150 kyr and was spinning at its surface disruption rate 75 kyr ago, but the rotational evolution of WT24 depends on the surface's thermal properties and probably is more complex than a simple spin-down.  相似文献   
88.
Jon Legarreta 《Icarus》2008,196(1):184-201
Numerical simulations of jovian vortices at tropical and temperate latitudes, under different atmospheric conditions, have been performed using the EPIC code [Dowling, T.E., Fisher, A.S., Gierasch, P.J., Harrington, J., LeBeau, R.P., Santori, C.M., 1998. Icarus 132, 221-238] to simulate the high-resolution observations of motions and of the lifetimes presented in a previous work [Legarreta, J., Sánchez-Lavega, A., 2005. Icarus 174, 178-191] and infer the vertical structure of Jupiter's troposphere. We first find that in order to reproduce the longevity and drift rate of the vortices, the Brunt-Väisälä frequency of the atmosphere in the upper troposphere (pressures P∼1 to 7 bar) should have a lower limit value of 5×10−3 s−1, increasing upward up to 1.25×10−2 s−1 at pressures P∼0.5 bar (latitudes between 15° and 45° in both hemispheres). Second, the vortices drift also depend on the vertical structure of the zonal wind speed in the same range of altitudes. Simulations of the slowly drifting Southern hemisphere vortices (GRS, White Ovals and anticyclones at 40° S) require a vertically-constant zonal-wind with depth, but Northern hemisphere vortices (cyclonic “barges” and anticyclones at 19, 41 and 45° N) require decreasing winds at a rate of ∼5 m s−1 per scale height. However vortices drifting at a high speed, close to or in the peak of East or West jets and in both hemispheres, require the wind speed slightly increasing with depth, as is the case for the anticyclones at 20° S and at 34° N. We deduce that the maximum absolute vertical shear of the zonal wind from P∼1 bar up to P∼7 bar in these jets is ∼15 m s−1 per scale height. Intense vortices with tangential velocity at their periphery ∼100 m s−1 tend to decay asymptotically to velocities ∼40 to 60 m s−1 with a characteristic time that depends on the vortex intensity and static stability of the atmosphere. The vortices adjust their tangential velocity to the averaged peak to peak velocity of the opposed eastward and westward jets at their boundary. We show through our simulations that large-scale and long-lived vortices whose maximum tangential velocity is ∼100 m s−1 can survive by absorbing smaller intense vortices.  相似文献   
89.
Coal-formed gas generated from the Permo-Carboniferous coal measures has become one of the most important targets for deep hydrocarbon exploration in the Bohai Bay Basin, offshore eastern China. However, the proven gas reserves from this source rock remain low to date, and the distribution characteristics and accumulation model for the coal-formed gas are not clear. Here we review the coal-formed gas deposits formed from the Permo-Carboniferous coal measures in the Bohai Bay Basin. The accumulations are scattered, and dominated by middle-small sized gas fields, of which the proven reserves ranging from 0.002 to 149.4×108 m3 with an average of 44.30×108 m3 and a mid-point of 8.16×108 m3. The commercially valuable gas fields are mainly found in the central and southern parts of the basin. Vertically, the coal-formed gas is accumulated at multiple stratigraphic levels from Paleogene to Archaeozoic, among which the Paleogene and PermoCarboniferous are the main reservoir strata. According to the transporting pathway, filling mechanism and the relationship between source rocks and reservoir, the coal-formed gas accumulation model can be defined into three types: "Upward migrated, fault transported gas" accumulation model, "Laterally migrated, sandbody transported gas" accumulation model, and "Downward migrated, sub-source, fracture transported gas" accumulation model. Source rock distribution, thermal evolution and hydrocarbon generation capacity are the fundamental controlling factors for the macro distribution and enrichment of the coal-formed gas. The fault activity and the configuration of fault and caprock control the vertical enrichment pattern.  相似文献   
90.
This study describes the use of linearly modulated optically stimulated luminescence (LM‐OSL) to distinguish surface‐soil derived sediments from those derived from channel bank erosion. LM‐OSL signals from quartz extracted from 15 surface‐soil and five channel bank samples were analysed and compared to signals from samples collected from two downstream river sites. Discriminant analysis showed that the detrapping probabilities of fast, first slow and second slow components of the LM‐OSL signal can be used to differentiate between the samples collected from the channel bank and surface‐soil sources. We show that for each of these source end members these components are all normally distributed. These distributions are then used to estimate the relative contribution of surface‐soil derived and channel bank derived sediment to the river bed sediments. The results indicate that channel bank derived sediments dominate the sediment sources at both sites, with 90.1 ± 3% and 91.9 ± 1.9% contributions. These results are in agreement with a previous study which used measurements of 137Cs and 210Pbex fallout radionuclides to estimate the relative contribution from these two sources. This result shows that LM‐OSL may be a useful method, at least in the studied catchment, to estimate the relative contribution of surface soil and channel erosion to river sediments. However, further research in different settings is required to test the difference of OSL signals in distinguishing these sediment sources. And if generally acceptable, this technique may provide an alternative to the use of fallout radionuclides for source tracing. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号