首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   704篇
  免费   38篇
  国内免费   3篇
测绘学   24篇
大气科学   53篇
地球物理   153篇
地质学   254篇
海洋学   67篇
天文学   115篇
综合类   2篇
自然地理   77篇
  2021年   9篇
  2020年   10篇
  2019年   10篇
  2018年   20篇
  2017年   17篇
  2016年   18篇
  2015年   16篇
  2014年   21篇
  2013年   40篇
  2012年   31篇
  2011年   39篇
  2010年   30篇
  2009年   48篇
  2008年   48篇
  2007年   45篇
  2006年   33篇
  2005年   28篇
  2004年   28篇
  2003年   31篇
  2002年   22篇
  2001年   18篇
  2000年   16篇
  1999年   10篇
  1998年   11篇
  1997年   6篇
  1996年   10篇
  1995年   7篇
  1994年   6篇
  1993年   12篇
  1992年   3篇
  1991年   3篇
  1990年   7篇
  1989年   3篇
  1988年   5篇
  1985年   8篇
  1984年   3篇
  1982年   2篇
  1981年   6篇
  1980年   7篇
  1979年   4篇
  1978年   3篇
  1977年   2篇
  1975年   8篇
  1974年   5篇
  1973年   6篇
  1972年   4篇
  1971年   5篇
  1970年   2篇
  1968年   5篇
  1967年   2篇
排序方式: 共有745条查询结果,搜索用时 109 毫秒
61.
We present a general recipe for constructing N -body realizations of galaxies comprising near spherical and disc components. First, an exact spherical distribution function for the spheroids (halo and bulge) is determined, such that it is in equilibrium with the gravitational monopole of the disc components. Second, an N -body realization of this model is adapted to the full disc potential by growing the latter adiabatically from its monopole. Finally, the disc is sampled with particles drawn from an appropriate distribution function, avoiding local-Maxwellian approximations. We performed test simulations and find that the halo and bulge radial density profile very closely match their target model, while they become slightly oblate due to the added disc gravity. Our findings suggest that vertical thickening of the initially thin disc is caused predominantly by spiral and bar instabilities, which also result in a radial re-distribution of matter, rather than scattering off interloping massive halo particles.  相似文献   
62.
Relativistic effects for near-earth satellite orbit determination   总被引:1,自引:0,他引:1  
The relativistic formulations for the equations which describe the motion of a near-Earth satellite are compared for two commonly used coordinate reference systems (RS). The discussion describes the transformation between the solar system barycentric RS and both the non-inertial and inertial geocentric RSs. A relativistic correction for the Earth's geopotential expressed in the solar system barycentric RS and the effect of geodesic precession on the satellite orbit in the geocentric RS are derived in detail. The effect of the definition of coordinate time on scale is also examined. A long-arc solution using 3 years of laser range measurements of the motion of the Lageos satellite is used to demonstrate that the effects of relativity formulated in the geocentric RS and in the solar system barycentric RS are equivalent to a high degree of accuracy.  相似文献   
63.
64.
65.
In November 2005, we observed the moons of Mars using the Arecibo 2380-MHz (13-cm) radar, obtaining a result for the OC radar albedo of Phobos (0.056±0.014) consistent with its previously reported radar albedo and implying an upper bound on its near-surface bulk density of . We detected Deimos by radar for the first time, finding its OC radar albedo to be 0.021±0.006, implying an upper bound on its near-surface density of , consistent with a high-porosity regolith. We briefly discuss reasons for these low radar albedos, Deimos' being possibly the lowest of any Solar System body yet observed by radar.  相似文献   
66.
The Gede Volcanic Complex (GVC) of the Sunda island arc (West Java, Indonesia) consists of multiple volcanic centres and eruptive groups with complex magmatic histories. We present new petrological, mineralogical, whole-rock major and trace element and Sr–O isotopic data to provide constraints on the relative importance of fractional crystallisation and magma mixing in petrogenesis, as well as on the role and nature of the arc crust. Banded juvenile scoria from Young and Old Gede provide unequivocal evidence for the (late-stage) interaction of distinct magmas at Gede volcano. However, the relatively small-degree compositional zoning observed in plagioclase phenocrysts of all eruptive groups (up to ~20 mol% An) may be attributed to physical changes in magma properties (e.g. P, T, and PH2O) rather than changes in melt composition. Major element and trace element variations within each eruptive series are inconsistent with magmatic evolution through simple mixing processes. Instead, mixing of variably fractionated magma batches is suggested to account for the significant scatter in some element variation diagrams. No correlation is observed between textural complexity and/or mineral disequilibrium and whole-rock geochemistry. REE data and geochemical modelling indicate that fractional crystallisation involving amphibole in the mid- to lower crust, and fractionation of plagioclase, clinopyroxene, Fe–Ti oxide ± olivine ± orthopyroxene provide strong control on the geochemical evolution of GVC rocks. Two-pyroxene geothermobarometry provides pre-eruption crystallisation temperatures of 891–1,046°C and pressures of 3.4–6.5 kbar, equivalent to ~13–24 km depth beneath the volcanoes (mid- to lower crust). Low, mantle-like clinopyroxene δ18O values of GVC lavas and poor correlation of Sr isotope ratios with indices of differentiation precludes significant assimilation of isotopically distinct crust during magmatic differentiation. Therefore, we suggest that the geochemical character of the moderately thick West Javan arc crust is relatively immature compared to typical continental crust. Trace element ratios and strontium isotopes show that the magmatic source composition of the older geographical units, Gegerbentang and Older Quaternary, is distinct from the other GVC groups.  相似文献   
67.
High precision isotope ratio and trace element determination can be achieved with modern quadrupole ICP-MS provided that short and long-term instrument performance is accurately monitored. Here we present results for the isotope ratios 6Li/7Li, 147Sm/149Sm, 160Dy/161Dy, 207Pb/206Pb, 208Pb/206Pb, 206Pb/204Pb and 235U/238U with which we determined long-term isotope ratio stability of relevance to both trace element and isotope determination. With respect to trace element determination, we first present long-term observations regarding oxide formation rates of Ba and Nd on light REE and heavy REE, as well as Zr on Ag. These showed good correlations and could be used to correct effectively the interference. The efficacy of this correction was demonstrated with analyses of the rock reference material BHVO-2 at both low and high oxide formation rates. Next, we studied the long-term reproducibility of a Dy isotope ratio that was measured to correct for the isobaric interference on Gd. It was found that, regardless of tuning condition, the ratio reproduced very well (0.58% RSD, 1s) and that the estimate of the Gd concentration did not suffer from the large correction (> 10%) caused by the Dy isobar. Long-term reproducibilities of Li, Sm and U isotope ratios, required for accurate mass bias correction when isotopically enriched internal standards of these elements are employed, were measured in the rock reference materials AGV-2 and JA-3 over a time period of up to 3 years. As expected, the Li isotope ratio showed the largest variability (RSD = 7%), but the other two ratios had relative external reproducibilities of only 1.01% (1s, U) and 0.67% (Sm). The mass bias-induced scatter in measurements for Sm and U was so small that the internal standard correction was effective, even for samples with high concentrations of these elements. With regard to Pb-isotope ratio determination, we also present long-term reproducibility for NIST SRM 982, run as an unknown and two accuracy tests for Pb separated from granitoids and from meteorites. It is demonstrated that the obtained ratios, including those involving 204Pb, are accurate relative to MC-ICP-MS determinations and of comparable precision to conventional TIMS analysis. The excellent agreement between all data sets shows the potential of modern quadrupole ICP-MS instrumentation for Pb-isotope determination, particularly for samples with very low Pb content.  相似文献   
68.
Pronounced climate warming during the past century has been well documented in high-latitude regions. Nonetheless, considerable heterogeneity exists in northern climate trends. We examined the roles of cryospheric landscape and lake depth in modulating the rate and magnitude of local climate responses through a paleolimnological study of lakes from southwest Yukon, Canada. By sampling lakes at varying distances from the Wrangell-St. Elias ice fields, we hypothesized that, for lakes of similar maximum depth, sites closest to the ice fields would be relatively complacent in terms of their chironomid and diatom assemblage changes over the past ~200 years. This hypothesis is based on the moderating effect of the glaciers on local climate, which would be most pronounced in the lakes nearest to the ice fields. However, given the known ecological differences between deep and shallow lakes, we further predicted that, for a given distance from the ice fields, a sediment record from a shallower lake would show the greatest change in stratigraphic subfossil assemblages. Because of the complicated shape of the ice fields, we applied the longitude for each site (which decreases from west to east) to approximate the proximity of our study lakes to the ice fields. Consistent with our predictions, we observed a space-transgressive pattern in the chironomid assemblage turnover that was associated with their proximity to the ice fields (r = ?0.75, P = 0.034, n = 8) across lakes of similar depth (mean maximum depth ± 1, SE = 18.1 ± 2.6 m). Considering a broader network of lakes that represented a greater range in maximum depth (4.9–29 m), we found that differences in subfossil chironomid assemblages between the modern and ca. AD 1800 sediment layers were strongly related to lake depth (r = ?0.77, P < 0.001, n = 15), but failed to detect a significant relationship with latitude or longitude (i.e. our proxy for proximity to the ice fields). Similarly, our comparative high-resolution analyses of two lakes with distinct lake morphometries, but similar proximities to the ice fields, demonstrated the predicted contrasting pattern: we observed pronounced post-1880 changes in the biotic assemblages in the shallow lake and a muted and delayed response (i.e. ~1970s) in the deeper lake. Our findings confirm that cryospheric landscape features can strongly modulate regional climate. Furthermore, our work shows that investigators need to be conscious of how climate change affects the structure and functioning of lakes of different typologies, which influences the way in which paleoclimate signals are recorded and interpreted.  相似文献   
69.
Barriers to adaptation have emerged as key concerns in climate change theory and practice, however there remains little consensus about which barriers are the most significant to different groups and how competing concerns may be addressed. We investigate the significance of different barriers to adaptation for governments, the private sector, and civil society in Australia through a systematic analysis of submissions to the Australian Productivity Commission’s inquiry into barriers to adaptation. Our results show that respondents prioritise barriers differently according to their respective sectors, and that there are competing concerns about which barriers should be addressed first. Nevertheless, some barriers are more persistent in the submissions than others, with governance and policy seen by most groups as being the major impediments to adaptation. We explain the implications of our analysis for adaptation politics and policy.  相似文献   
70.
Uturuncu is a dormant volcano in the Altiplano of SW Bolivia. A present day ~70 km diameter interferometric synthetic aperture radar (InSAR) anomaly roughly centred on Uturuncu’s edifice is believed to be a result of magma intrusion into an active crustal pluton. Past activity at the volcano, spanning 0.89 to 0.27 Ma, is exclusively effusive and almost all lavas and domes are dacitic with phenocrysts of plagioclase, orthopyroxene, biotite, ilmenite and Ti-magnetite plus or minus quartz, and microlites of plagioclase and orthopyroxene set in rhyolitic groundmass glass. Plagioclase-hosted melt inclusions (MI) are rhyolitic with major element compositions that are similar to groundmass glasses. H2O concentrations plotted versus incompatible elements for individual samples describe a trend typical of near-isobaric, volatile-saturated crystallisation. At 870 °C, the average magma temperature calculated from Fe–Ti oxides, the average H2O of 3.2 ± 0.7 wt% and CO2 typically <160 ppm equate to MI trapping pressures of 50–120 MPa, approximately 2–4.5 km below surface. Such shallow storage precludes the role of dacite magma emplacement into pre-eruptive storage regions as being the cause of the observed InSAR anomaly. Storage pressures, whole-rock (WR) chemistry and phase assemblage are remarkably consistent across the eruptive history of the volcano, although magmatic temperatures calculated from Fe–Ti oxide geothermometry, zircon saturation thermometry using MI and orthopyroxene-melt thermometry range from 760 to 925 °C at NNO ± 1 log. This large temperature range is similar to that of saturation temperatures of observed phases in experimental data on Uturuncu dacites. The variation in calculated temperatures is attributed to piecemeal construction of the active pluton by successive inputs of new magma into a growing volume of plutonic mush. Fluctuating temperatures within the mush can account for sieve-textured cores and complex zoning in plagioclase phenocrysts, resorption of quartz and biotite phenocrysts and apatite microlites. That Fe–Ti oxide temperatures vary by ~50–100 °C in a single thin section indicates that magmas were not homogenised effectively prior to eruption. Phenocryst contents do not correlate with calculated magmatic temperatures, consistent with crystal entrainment from the mush during magma ascent and eruption. Microlites grew during ascent from the magma storage region. Variability in the proportion of microlites is attributed to differing ascent and effusion rates with faster rates in general for lavas >0.5 Ma compared to those <0.5 Ma. High microlite contents of domes indicate that effusion rates were probably slowest in dome-forming eruptions. Linear trends in WR major and trace element chemistries, highly variable, bimodal mineral compositions, and the presence of mafic enclaves in lavas demonstrate that intrusion of more mafic magmas into the evolving, shallow plutonic mush also occurred further amplifying local temperature fluctuations. Crystallisation and resorption of accessory phases, particularly ilmenite and apatite, can be detected in MI and groundmass glass trace element covariation trends, which are oblique to WRs. Marked variability of Ba, Sr and La in MI can be attributed to temperature-controlled, localised crystallisation of plagioclase, orthopyroxene and biotite within the evolving mush.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号