首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   279篇
  免费   12篇
  国内免费   9篇
测绘学   5篇
大气科学   41篇
地球物理   57篇
地质学   83篇
海洋学   72篇
天文学   30篇
综合类   9篇
自然地理   3篇
  2022年   1篇
  2021年   1篇
  2020年   4篇
  2019年   9篇
  2018年   12篇
  2017年   14篇
  2016年   19篇
  2015年   12篇
  2014年   14篇
  2013年   21篇
  2012年   13篇
  2011年   19篇
  2010年   23篇
  2009年   20篇
  2008年   11篇
  2007年   12篇
  2006年   22篇
  2005年   18篇
  2004年   6篇
  2003年   13篇
  2002年   8篇
  2001年   4篇
  2000年   3篇
  1999年   6篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1987年   1篇
  1986年   1篇
  1971年   1篇
排序方式: 共有300条查询结果,搜索用时 15 毫秒
101.
To design the deep-sea mining robot, it is essential to analyze the tribological characteristics of its roller. In this study, we introduced the dynamic simulation model to analyze the tribological characteristics of the roller for deep-sea mining robot, considering the temperature, viscosity, viscous damping force, and gap size between the inner and outer rib seals. Effective viscosity changes with gap size in micro/nanoscale while the effective viscosity is equal to the kinematic viscosity in macroscale. For the stable operation of the roller, the effective viscosity must be less than the critical viscosity. As the gap size decreases, the effective viscosity increases while the critical viscosity decreases. This study shows that the gap size between the inner and outer rib seals of roller is the most dominant factor in designing the roller for deep-sea mining robot to use at relatively low temperatures that are found in the deep-sea environments.  相似文献   
102.
Undrained shear strength is a fundamental parameter for estimating the stability of soft soils. This study explores the relationship between undrained shear strength, void ratio, and shear wave velocity for saturated and normally consolidated clay specimens. The undrained shear strength void ratio-shear wave velocity relationship was correlated to empirically determined parameters of selected marine clay specimens. To verify the proposed relationship between undrained shear strength and shear wave velocity, in situ flat dilatometer tests were used for determining the undrained shear strength, and downhole tests were used to assess the shear wave velocity on a natural soil deposit at various depths. The undrained shear strength estimated from the in situ shear wave velocities was compared to the undrained shear strength obtained in the field. The results show that the inferred undrained shear strength yield similar values and follow the same trends as the in situ undrained shear strength data. This method using shear wave velocity can help to nondestructively estimate the undrained shear strength of soft soils in the field and be used in both on-shore and off-shore geotechnical engineering projects.  相似文献   
103.
Growth and reproduction of the Japanese mantis shrimp, Oratosquilla oratoria, were investigated in the Tongyeong, Korea from July 2014 to August 2015. A total of 2,621 samples (1,380 females and 1,241 males) were collected during the study period. Females were observed more frequently than males. The mean body length (BL) was 128.5 ± 0.38 mm in females and 126.9 ± 0.42 mm in males. The mean body weight (BW) was 31.2 ± 0.28 g in females and 31.1 ± 0.32 g in males. There was a significant difference in the length-frequency distribution between females and males. The relationship between BL and BW was lnBW = 2.85 × lnBL - 10.43 for females and lnBW = 2.87 × lnBL -10.52 for males. The gonadosomatic index (GSI) varied on a monthly basis. The GSI reached a maximum in May and a minimum in November. The highest values of the GSI coincided with the spawning period of O. oratoria. Larger individuals of O. oratoria have their spawning season earlier than smaller ones. The size at sexual maturity of females was estimated as 96.5 mm. The Von Bertalanffy growth function parameters were BL = 184.5 mm, K = 0.72 year?1, C = 0.36 and WP = 0.45 for females and BL = 183.75 mm, K = 0.82 year?1, C = 0.38 and WP = 0.22 for males. The growth of males was slightly faster than females. The present study will help with the fisheries management of O. oratoria based on ecological parameters.  相似文献   
104.
It is highlighted in the past that the soil–structure interaction phenomenon can produce a significant alteration on the response of a bridge structure. A variety of approaches has been developed in the past, which is capable of tackling the soil–structure interaction problem from different perspectives. The popular approach of a discretized truncated finite element model of the soil domain is not always a numerically viable solution, especially for computationally demanding simulations such as the probabilistic fragility analysis of a bridge structure or the real time hybrid simulation. This paper aims to develop a complete modeling procedure that is capable of coping with the soil–structure interaction problem of inelastic bridge structures through the use of a frequency dependent lumped parameter assembly. The proposed procedure encounters accuracy and global stability issues observed on past methods while maintaining the broad applicability of the method by any commercial FEM software. A case study of an overpass bridge structure under earthquake excitations is illustrated in order to verify the proposed method. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
105.
Heavy oil contamination is one of the most important environmental issues. Toxicities of polycyclic aromatic hydrocarbons (PAHs), including immune toxicities, are well characterized, however, the immune toxic effects of heavy oil, as a complex mixture of PAHs, have not been investigated. In the present study, we selected Japanese flounder (Paralichthys olivaceus) as a model organism, and observed alteration of immune function by the exposure to heavy oil. To analyze the expression profiles of immune system-related genes, we selected 309 cDNAs from our flounder EST library, and spotted them on a glass slide. Using this cDNA array, alteration of gene expression profiles was analyzed in the kidneys of flounders exposed to heavy oil. Six Japanese flounders (mean body weight: 197 g) were acclimated to laboratory conditions at 19-20 degrees C. Three fish were exposed to heavy oil C (bunker C) at a concentration of 3.8 g/L for 3 days, and the others were kept in seawater without heavy oil and used as the control. After the exposure period, the fish were transferred into control seawater and maintained for 4 days, and then they were dissected and their kidneys were removed. Total RNA was extracted from the kidney samples to use in gene expression analyses. The microarray detected alteration of immune system-related genes in the kidneys of heavy oil-exposed flounders, including down-regulation of immunoglobulin light chain, CD45, major histocompatibility complex class II antigens and macrophage colony-stimulating factor precursor, and up-regulation of interleukin-8 and lysozyme. These results suggest that pathogen resistance may be weakened in heavy oil-exposed fish, causing a subsequent bacterial infection, and then proinflammatory genes may be induced as a defensive response against the infection. Additionally, we found candidate genes for use as biomarkers of heavy oil exposure, such as N-myc downstream regulated gene 1 and heat shock cognate 71 kDa proteins.  相似文献   
106.
Substructure hybrid simulation has been the subject of numerous investigations in recent years. The simulation method allows for the assessment of the seismic performance of structures by representing critical components with physical specimens and the rest of the structure with numerical models. In this study the system level performance of a six‐storey structure with telescoping self‐centering energy dissipative (T‐SCED) braces is validated through pseudo‐dynamic (PsD) hybrid simulation. Fragility curves are derived for the T‐SCED system. This paper presents the configuration of the hybrid simulation, the newly developed control software for PsD hybrid simulation, which can integrate generic hydraulic actuators into PsD hybrid simulation, and the seismic performance of a structure equipped with T‐SCED braces. The experimental results show that the six‐storey structure with T‐SCED braces satisfies performance limits specified in ASCE 41. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
107.
Identifying zones and movement patterns of people is crucial to understanding adjacent regions and the relationship in urban areas. Most previous studies addressed zones or movement patterns separately without analysing simultaneously the two issues. In this article, we propose an integrated approach to discover directly both zones and movement patterns among the zones, referred to as movement patterns between zones (MZPs), from historical boarding behaviours of passengers in subway networks by using an agglomerative clustering method. In addition, evaluation measures of MZPs are suggested in terms of coverage and accuracy. The effectiveness of the proposed approach is finally demonstrated through a real-world data set obtained from smart cards on a subway network in Seoul, Korea.  相似文献   
108.
Biosurfactants are frequently used in petroleum hydrocarbon and dense non-aqueous phase liquids (DNAPLs) remediation. The applicability of biosurfactant use in clayey soils requires an understanding and characterization of their interaction. Comprehensive effects of surfactants and electrolyte solutions on kaolinite clay soil were investigated for index properties, compaction, strength characteristics, hydraulic conductivities, and adsorption characteristics. Sodium dodecyl sulfate (SDS) and NaPO3 decreased the liquid limit and plasticity index of the test soil. Maximum dry unit weights were increased and optimum moisture contents were decreased as SDS and biosurfactant were added for the compaction tests for mixtures of 30% kaolinite and 70% sand. The addition of non-ionic surfactant, biosurfactant, and CaCl2 increased the initial elastic modulus and undrained shear strength of the kaolinite–sand mixture soils. Hydraulic conductivities were measured by fixed-wall double-ring permeameters. Results showed that the hydraulic conductivity was not significantly affected, but slightly decreased from 1×10−7 cm/s (water) to 0.3×10−7 cm/s for Triton X-100 and SDS. The adsorption characteristics of the chemicals onto kaolinite were also investigated by developing isotherm curves. SDS adsorbed onto soil particles with the strongest bonding strength of the fluids tested. Correlations among parameters were developed for surfactants, electrolyte solutions, and clayey soils.  相似文献   
109.
Electrical resistivity survey and the geotechnical SPT blow counts (N value) method were simultaneously analyzed to investigate the stability of a center-core type earth-fill dam against the seepage phenomenon. The coupling of these heterogeneous field methods provided a chance to understand the status of underground material by comparing the geophysical and geotechnical view. The analysis shows that the zones with low resistivity value generally have low N value, which means low stiffness. However, some zones with a high resistivity pattern are not accompanied by an increase of its N value, and are even showing a lower N value. These results imply that one should be careful to directly correlate resistivity value with the real status of the core material of a fill dam. And a highly resistive zone may be in poor status due to the effect of increase of resistivity value as a result of the piping condition. Additional laboratory tests show that there is a deficiency of fine soil particles believed as the clay at the troubled region, which means an increase in resistivity value. Therefore, multiple explorations should be planned to reduce the uncertainty in application of geophysical methods to dam safety evaluation in order to compensate the resistivity information of core material.  相似文献   
110.
The computational demand of the soil‐structure interaction analysis for the design and assessment of structures, as well as for the evaluation of their life‐cycle cost and risk exposure, has led the civil engineering community to the development of a variety of methods toward the model order reduction of the coupled soil‐structure dynamic system in earthquake regions. Different approaches have been proposed in the past as computationally efficient alternatives to the conventional finite element model simulation of the complete soil‐structure domain, such as the nonlinear lumped spring, the macroelement method, and the substructure partition method. Yet no approach was capable of capturing simultaneously the frequency‐dependent dynamic properties along with the nonlinear behavior of the condensed segment of the overall soil‐structure system under strong earthquake ground motion, thus generating an imbalance between the modeling refinement achieved for the soil and the structure. To this end, a dual frequency‐dependent and intensity‐dependent expansion of the lumped parameter modeling method is proposed in the current paper, materialized through a multiobjective algorithm, capable of closely approximating the behavior of the nonlinear dynamic system of the condensed segment. This is essentially the extension of an established methodology, also developed by the authors, in the inelastic domain. The efficiency of the proposed methodology is validated for the case of a bridge foundation system, wherein the seismic response is comparatively assessed for both the proposed method and the detailed finite element model. The above expansion is deemed a computationally efficient and reliable method for simultaneously considering the frequency and amplitude dependence of soil‐foundation systems in the framework of nonlinear seismic analysis of soil‐structure interaction systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号