首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   102篇
  免费   3篇
大气科学   16篇
地球物理   26篇
地质学   32篇
海洋学   7篇
天文学   10篇
综合类   1篇
自然地理   13篇
  2023年   1篇
  2022年   2篇
  2021年   2篇
  2018年   2篇
  2017年   5篇
  2016年   3篇
  2015年   2篇
  2014年   10篇
  2013年   6篇
  2012年   4篇
  2011年   7篇
  2010年   3篇
  2009年   8篇
  2008年   5篇
  2007年   2篇
  2006年   2篇
  2004年   4篇
  2003年   5篇
  2002年   2篇
  2001年   3篇
  2000年   1篇
  1999年   2篇
  1997年   1篇
  1993年   1篇
  1992年   1篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1984年   1篇
  1983年   4篇
  1982年   1篇
  1981年   2篇
  1980年   3篇
  1979年   1篇
  1978年   1篇
  1970年   1篇
排序方式: 共有105条查询结果,搜索用时 15 毫秒
81.
82.
The SOLAS Air-Sea Gas Exchange (SAGE) experiment was conducted in Sub-Antarctic waters off the east coast of the South Island of New Zealand in the late summer of 2004. This mesoscale iron enrichment experiment was unique in that chlorophyll a (chl a) and primary productivity were only 2× OUT stations values toward the end of the experiment and this enhancement was due to increased activity of non-diatomaceous species. In addition, this enhancement in activity appeared to occur without a significant build up of particulate organic carbon. Picoeukaryotes (<2 ??m) were the only members of the phytoplankton assemblage that showed a statistically significant increase, a doubling in biomass. To better understand the controls of phytoplankton growth and biomass, we present results from a series of on-deck perturbation experiments conducted during SAGE. Results suggest that the pico-dominated phytoplankton assemblage was only weakly inhibited by iron. Diatoms with high growth rates comprised a small (<1%) fraction of the phytoplankton assemblage, were likely iron limited, and potentially further limited by silicic acid and therefore did not significantly contribute to bloom dynamics. On deck experiments and comparison of SAGE with other iron addition experiments suggested that neither light availability nor deep mixed layers limited phytoplankton growth. Although no substantial increase in grazing rate or specific phytoplankton growth rate was detected, microzooplankton biomass doubled over SAGE as a result of an increase in cell size. The importance of microzooplankton grazing was highlighted by the fact that they were capable of consuming 15-49% of the total phytoplankton production per day. Removal was highest on eukaryotic picophytoplankton production with a mean value of 72% (29-143%). Patch dilution played an important role during SAGE; the mean patch net algal growth:dilution rate, 1.13 (0.4-2.2) was the lowest reported for a mesoscale iron enrichment experiment. Phytoplankton biomass, estimated by chlorophyll a, only accumulated when phytoplankton growth exceeded grazing and when net algal growth exceeded dilution rate. The SAGE results highlight the function of the smallest phytoplankton size fraction described by the ecumenical Iron Hypothesis. Thus, adding iron to HNLC-low silicic acid regions during certain times of the year may simply transfer more carbon through the microbial food web. A primary implication of this study is that any iron-mediated gain in fixed carbon with this set of environmental conditions has a high probability of being recycled in surface waters.  相似文献   
83.
The sandbuilder worm Sabellaria vulgaris is widely found along the Mid-Atlantic region of the USA, but occurs in dense, reef-like structures in only one estuary. Reef formation and persistence was monitored in lower Delaware Bay along the western shoreline between 2001 and 2009 using ground surveys and aerial photography. These observations were combined with field larval settlement studies, laboratory low temperature susceptibility experiments, and an examination of the physical properties of the individual beaches to attempt to explain the location and persistence of the reefs. Neither exposure to temperature minima during spring low tides nor yearly variations in recruitment accounted for the observed reef distribution patterns. This study suggests that two physical factors, the distance from the beach to the 2-m isobath and the presence of coarse substratum >2 mm explain the greatest amount of variation in the observed distribution of intertidal S. vulgaris reefs and small aggregations.  相似文献   
84.
Natural Hazards - In October 2015, heavy rains brought by Typhoon Koppu generated landslides and debris flows in the municipalities of Bongabon, Laur, and Gabaldon in Nueva Ecija province....  相似文献   
85.
86.
Consideration of climate-related impacts on coasts is important to ensure readiness for disaster response. Local risk of storm surge and strong winds from hurricanes affecting Galveston, Texas, is quantified using a bivariate copula model fit to observed data. The model uses a two-dimensional Archimedean copula. Parametric uncertainty (5th and 95th percentiles) is quantified using a Monte Carlo procedure. The annual probability of a hurricane producing winds of at least 50 ms?1 and a surge of at least 4 m is 1.7 percent with a 95 percent confidence interval of (1.33, 1.78) percent. The methodology can be extended to include inland flooding and can be applied elsewhere with available information.  相似文献   
87.
A high-resolution, regional coupled atmosphere–ocean model is used to investigate strong air–sea interactions during a rapidly developing extratropical cyclone (ETC) off the east coast of the USA. In this two-way coupled system, surface momentum and heat fluxes derived from the Weather Research and Forecasting model and sea surface temperature (SST) from the Regional Ocean Modeling System are exchanged via the Model Coupling Toolkit. Comparisons are made between the modeled and observed wind velocity, sea level pressure, 10 m air temperature, and sea surface temperature time series, as well as a comparison between the model and one glider transect. Vertical profiles of modeled air temperature and winds in the marine atmospheric boundary layer and temperature variations in the upper ocean during a 3-day storm period are examined at various cross-shelf transects along the eastern seaboard. It is found that the air–sea interactions near the Gulf Stream are important for generating and sustaining the ETC. In particular, locally enhanced winds over a warm sea (relative to the land temperature) induce large surface heat fluxes which cool the upper ocean by up to 2 °C, mainly during the cold air outbreak period after the storm passage. Detailed heat budget analyses show the ocean-to-atmosphere heat flux dominates the upper ocean heat content variations. Results clearly show that dynamic air–sea interactions affecting momentum and buoyancy flux exchanges in ETCs need to be resolved accurately in a coupled atmosphere–ocean modeling framework.  相似文献   
88.
89.
This paper addresses alternative procedures to the ESO supplied pipeline procedures for the reduction of UVES spectra of two quasar spectra to determine the value of the fundamental constant μ=Mp/Me at early times in the universe. The procedures utilize intermediate product images and spectra produced by the pipeline with alternative wavelength calibration and spectrum addition methods. Spectroscopic studies that require extreme wavelength precision need customized wavelength calibration procedures beyond that usually supplied by the standard data reduction pipelines. An example of such studies is the measurement of the values of the fundamental constants at early times in the universe. This article describes a wavelength calibration procedure for the UV–visual Echelle spectrometer on the very large telescope, however, it can be extended to other spectrometers as well. The procedure described here provides relative wavelength precision of better than 3×10-7 for the long-slit Thorium–Argon calibration lamp exposures. The gain in precision over the pipeline wavelength calibration is almost entirely due to a more exclusive selection of Th/Ar calibration lines.  相似文献   
90.
In the 300 km wide Adak-Amlia sector of the central Aleutian Trench ≈ 36 000 km3 of offscraped trench fill makes up the wedge-shaped mass of the Aleutian accretionary body. Within this wedge, seismic reflection profiles reveal an abundance of potential hydrocarbon-trapping structures. These structures include antiforms, thrust and normal faults, and stratigraphic pinchouts. Maximum closure on these features is 2 km. In addition, the silt and possibly sand size sediment within the offscraped turbidite deposits, and the porous diatomaceous pelagic deposits interbedded with and at the base of the wedge, may define suitable reservoirs for the entrapment of hydrocarbons. Potential seals for these reservoirs include diagenetically-altered and -produced siliceous and carbonate sediment. The organic carbon input into the central Aleutian Trench, based on carbon analyses of DSDP Legs 18 and 19 core samples, suggests that the average organic carbon content within the accretionary body is approximately 0.3–0.6%. Heat flow across the Aleutian Terrace indicates that at present the oil generation window lies at a depth of 3–6.5 km. At depths of 8 km (which corresponds to the maximum depth the offscraped sediment has been seismically resolved beneath the lower trench slope), the probable high (170–180°C) temperatures prohibit all but gas generation. The dewatering of trench sediment and subducted oceanic crust should produce an abundance of fluids circulating within the accretionary body. These fluids and gases can conduct hydrocarbons to any of the abundant trapping geometries or be lost from the system through sea floor seepage. In the Aleutian accretionary body all the conditions necessary for the formation of oil and gas deposits exist. The size and ultimate preservation of these deposits, however, are dependent on the deformational history of the prism both during accretion and after the accretion process has been superceded by subsequent tectonic regimes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号