首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   102篇
  免费   3篇
大气科学   16篇
地球物理   26篇
地质学   32篇
海洋学   7篇
天文学   10篇
综合类   1篇
自然地理   13篇
  2023年   1篇
  2022年   2篇
  2021年   2篇
  2018年   2篇
  2017年   5篇
  2016年   3篇
  2015年   2篇
  2014年   10篇
  2013年   6篇
  2012年   4篇
  2011年   7篇
  2010年   3篇
  2009年   8篇
  2008年   5篇
  2007年   2篇
  2006年   2篇
  2004年   4篇
  2003年   5篇
  2002年   2篇
  2001年   3篇
  2000年   1篇
  1999年   2篇
  1997年   1篇
  1993年   1篇
  1992年   1篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1984年   1篇
  1983年   4篇
  1982年   1篇
  1981年   2篇
  1980年   3篇
  1979年   1篇
  1978年   1篇
  1970年   1篇
排序方式: 共有105条查询结果,搜索用时 15 毫秒
31.
Recently, the prebiotic amino acid glycine has been found associated with natural jarosite samples from locations around the world. Since the discovery of jarosite on Mars, extensive research focuses on linking this mineral group with possible detection of biosignatures in the geologic record on Earth and Mars. Multiple analytical methods, including extraction and mass spectrometry techniques, have identified glycine and other biomolecules in jarosite samples. The jarosite end members jarosite (sensu stricto-potassium jarosite), natrojarosite (sodium jarosite), and ammoniojarosite (ammonium jarosite) have different thermodynamic stabilities, decompose at different rates, and have potentially different susceptibilities to substitution. The relationship between the thermodynamic stability of the jarosite end members and the effect that glycine has on the thermal decomposition behavior of each end member was investigated using thermal gravimetric analysis. Introducing glycine into the synthesis procedure (75 ppm) of the potassium, sodium, and ammonium jarosite end member has elucidated the effects that glycine has on the thermal stability of the mineral group. Potassium jarosite appears to be the least susceptible to the effects of glycine, with the sodium and ammonium end members showing marked changes in thermal decomposition behavior and decomposition rates. These results suggest that the sodium and ammonium jarosites are more suitable targets for identifying signs of prebiotic or biotic activity on Mars and Earth than the potassium jarosites. These results have implications for current in situ investigations of the martian surface and future sample return missions.  相似文献   
32.
Blood Falls, a saline subglacial discharge from the Taylor Glacier, Antarctica provides an example of the diverse physical and chemical niches available for life in the polar desert of the McMurdo Dry Valleys. Geochemical analysis of Blood Falls outflow resembles concentrated seawater remnant from the Pliocene intrusion of marine waters combined with products of weathering. The result is an iron-rich, salty seep at the terminus of Taylor Glacier, which is subject to episodic releases into permanently ice-covered Lake Bonney. Blood Falls influences thegeochemistry of Lake Bonney, and provides organic carbon and viable microbes to the lakesystem. Here we present the first data on the geobiology of Blood Falls and relate it totheevolutionary history of this unique environment. The novel geological evolution of thissubglacial environment makes Blood Falls an important site for the study of metabolic strategiesin subglacial environments and the impact of subglacial efflux on associated lake ecosystems.  相似文献   
33.
Over the past decade, the chemical compositions of fogs and intercepted clouds have been investigated at more than a dozen locations across the United States. Sampling sites have been located in the northeast, southeast, Rocky Mountain, and west coast regions of the US. They include both pristine and heavily polluted locations. Frontal/orographic clouds (warm and supercooled), intercepted coastal stratiform clouds, and radiation fogs have all been examined. Sample pH values range from below 3 to above 7. Major ions also exhibit a wide concentration range, with clouds at some locations exhibiting high sea salt concentrations, while composition at other locations is dominated by ammonium and sulfate or nitrate.  相似文献   
34.
加利福尼亚人生活在一个多姿多彩的世界。我们的家园面临经常的变动和永恒的挑战。宏伟的逆冲山脉、深蓝色的河谷、起伏的沙漠、湖泊与河流以及太平洋海岸为背景不同、兴趣各异的人们提供了天然的栖息之地。对于那些厌倦可预报的天气,偶尔被绵延起伏的草原隔断的平原,看...  相似文献   
35.

This is the first of two papers that describe the generation of a 25-member perturbed parameter ensemble (PPE) of high-resolution, global coupled simulations for the period 1900–2100, using CMIP5 historical and RCP8.5 emissions. Fifteen of these 25 coupled simulations now form a subset of the global projections provided for the UK Climate Projections 2018 (UKCP18). This first paper describes the selection of 25 variants (combinations of 47 parameters) using a set of cheap, coarser-resolution atmosphere-only simulations from a large sample of nearly 3000 variants. Retrospective 5-day weather forecasts run at climate resolution, and simulations of 2004–2009 with prescribed SST and sea ice are evaluated to filter out poor performance. We opted for a single design choice and sensitivity tests were done after the PPE was generated to demonstrate the effect of design choices on the filtering. Given our choice, only 38 of the parameter combinations were found to have acceptable performance at this stage. Idealised atmosphere-only simulations were then used to select the subset of 25 members that were as diverse as possible in terms of their CO2 and aerosol forcing, and their response to warmer SSTs. Using our parallel set of atmosphere-only and coupled PPEs (the latter from paper 2), we show that local biases in the atmosphere-only experiments are generally informative about the biases in the coupled PPE. Biases in radiative fluxes and cloud amounts are strongly informative for most regions, whereas this is only true for a smaller fraction of the globe for precipitation and dynamical variables. Therefore, the cheap experiments are an affordable way to search for promising parameter combinations but have limitations.

  相似文献   
36.
Pollen grains from grasses using the C3 and C4 photosynthetic pathways have distinct ranges of δ13C values that may be used to estimate their relative abundance in paleorecords. We evaluated a spooling-wire microcombustion device interfaced with an isotope-ratio mass spectrometer (SWiM-IRMS) for δ13C analysis of individual grass-pollen grains. Pollen from four C3 and four C4 grass species was isolated through micromanipulation and analyzed as single grains suspended in water. A carbon yield greater than the 2σ range of the carbon content of blanks containing only water was used to distinguish samples containing pollen (“pollen present”) from those not containing pollen. This criterion resulted in the exclusion of ∼45% of the 946 samples applied to the wire. The average δ13C values (±1σ) of the remaining samples were −26.9‰ (±6.3‰) and −11.5‰ (±9.6‰) for C3 grasses and C4 grasses, respectively, after blank-correcting the δ13C data. These results suggest that the SWiM-IRMS system can be used to distinguish C3 from C4 grass pollen. The high variability in measured δ13C values is likely caused by a combination of factors. These include natural isotopic variability among individual pollen grains; the relatively poor precision that can be obtained when determining δ13C values of such small samples; and the uncertainty in the magnitude, isotopic composition, and stability of the analytical blank. Nonetheless, high percentages of individual pollen grains were correctly classified as being of either C3 or C4 origin. On average, 90% (range = 78-100%) of pollen grains from C3 grasses had δ13C values more negative than the cutoff threshold of −19.2‰; while 84% (range = 77-90%) of pollen grains from C4 grasses had δ13C values more positive than −19.2‰. Compared with analysis using an elemental analyzer interfaced with an IRMS (EA-IRMS), the number of pollen grains required for δ13C-based evaluation of C3/C4 grass composition is many times lower with the SWiM-IRMS. Additionally, δ13C data from the SWiM-IRMS does not need to be incorporated into a mixing model to derive estimates of the abundance of C3 and C4 grass pollen. Carbon-isotopic analysis of individual grass-pollen grains using the SWiM-IRMS system may help improve our understanding of the evolutionary and ecological significance of grass taxa in the paleorecord.  相似文献   
37.
38.
The emerging field of bioastronomy is beginning to address one of the oldest questions in science and philosophy: Are we alone? By virtue of its sheer sensitivity, high frequency coverage, and long baselines, the SKA will play a pivotal role in bioastronomical studies. It will be a unique instrument with the capability to image proto-planetary disks in nearby star-forming regions and monitor the evolution of structures within those disks (“movies of planetary formation”). It will also be able to assess the extent to which interstellar molecules are incorporated into proto-planetary disks. It will also be able to reach qualitatively new levels of sensitivity in the search for intelligence elsewhere in the Galaxy, including for the first time the realistic possibility of detecting unintentional emissions or “leakage” (such as from TV transmitters) from nearby stars.  相似文献   
39.
Areas of high nutrients and low chlorophyll a comprise nearly a third of the world’s oceans, including the equatorial Pacific, the Southern Ocean and the Sub-Arctic Pacific. The SOLAS Sea-Air Gas Exchange (SAGE) experiment was conducted in late summer, 2004, off the east coast of the South Island of New Zealand. The objective was to assess the response of phytoplankton in waters with low iron and silicic acid concentrations to iron enrichment. We monitored the quantum yield of photochemistry (Fv/Fm) with pulse amplitude modulated fluorometry, chlorophyll a, primary productivity, and taxonomic composition. Measurements of Fv/Fm indicated that the phytoplankton within the amended patch were relieved from iron stress (Fv/Fm approached 0.65). Although there was no significant difference between IN and OUT stations at points during the experiment, the eventual enhancement in chlorophyll a and primary productivity was twofold by the end of the 15-day patch occupation. However, no change in particulate carbon or nitrogen pools was detected. Enhancement in primary productivity and chlorophyll a were approximately equal for all phytoplankton size classes, resulting in a stable phytoplankton size distribution. Initial seed stocks of diatoms were extremely low, <1% of the assemblage based on HPLC pigment analysis, and did not respond to iron enrichment. The most dominant groups before and after iron enrichment were type 8 haptophytes and prasinophytes that were associated with ∼75% of chlorophyll a. Twofold enhancement of biomass estimated by flow cytometry was detected only in eukaryotic picoplankton, likely prasinophytes, type 8 haptophytes and/or pelagophytes. These results suggest that factors other than iron, such as silicic acid, light or physical disturbance limited the phytoplankton assemblage during the SAGE experiment. Furthermore, these results suggest that additional iron supply to the Sub-Antarctic under similar seasonal conditions and seed stock will most likely favor phytoplankton <2 ??m. This implies that any iron-mediated gain of fixed carbon will most likely be remineralized in shallow water rather than sink and be sequestered in the deep ocean.  相似文献   
40.
In May of 1998, Owen Bricker and his co-author Michael Ruggiero introduced a conceptual design for integrating the Nation’s environmental research and monitoring programs. The Framework for Integrated Monitoring and Related Research was an organizing strategy for relating data collected by various programs, at multiple spatial and temporal scales, and by multiple science disciplines to solve complex ecological issues that individual research or monitoring programs were not designed to address. The concept nested existing intensive monitoring and research stations within national and regional surveys, remotely sensed data, and inventories to produce a collaborative program for multi-scale, multi-network integrated environmental monitoring and research. Analyses of gaps in data needed for specific issues would drive decisions on network improvements or enhancements. Data contributions to the Framework from existing networks would help indicate critical research and monitoring programs to protect during budget reductions. Significant progress has been made since 1998 on refining the Framework strategy. Methods and models for projecting scientific information across spatial and temporal scales have been improved, and a few regional pilots of multi-scale data-integration concepts have been attempted. The links between science and decision-making are also slowly improving and being incorporated into science practice. Experiments with the Framework strategy since 1998 have revealed the foundational elements essential to its successful implementation, such as defining core measurements, establishing standards of data collection and management, integrating research and long-term monitoring, and describing baseline ecological conditions. They have also shown us the remaining challenges to establishing the Framework concept: protecting and enhancing critical long-term monitoring, filling gaps in measurement methods, improving science for decision support, and integrating the disparate integrated science efforts now underway. In the 15 years since the Bricker and Ruggiero (Ecol Appl 8(2):326–329, 1998) paper challenged us with a new paradigm for bringing sound and comprehensive science to environmental decisions, the scientific community can take pride in the progress that has been made, while also taking stock of the challenges ahead for completing the Framework vision.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号