首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29667篇
  免费   5340篇
  国内免费   7113篇
测绘学   1297篇
大气科学   6681篇
地球物理   7625篇
地质学   14996篇
海洋学   3462篇
天文学   1456篇
综合类   3277篇
自然地理   3326篇
  2024年   122篇
  2023年   540篇
  2022年   1237篇
  2021年   1490篇
  2020年   1275篇
  2019年   1316篇
  2018年   1610篇
  2017年   1473篇
  2016年   1717篇
  2015年   1305篇
  2014年   1803篇
  2013年   1562篇
  2012年   1498篇
  2011年   1558篇
  2010年   1694篇
  2009年   1689篇
  2008年   1441篇
  2007年   1401篇
  2006年   1175篇
  2005年   1066篇
  2004年   860篇
  2003年   859篇
  2002年   856篇
  2001年   810篇
  2000年   1012篇
  1999年   1452篇
  1998年   1223篇
  1997年   1303篇
  1996年   1085篇
  1995年   1001篇
  1994年   897篇
  1993年   783篇
  1992年   638篇
  1991年   464篇
  1990年   317篇
  1989年   348篇
  1988年   291篇
  1987年   199篇
  1986年   165篇
  1985年   121篇
  1984年   100篇
  1983年   78篇
  1982年   76篇
  1981年   54篇
  1980年   50篇
  1979年   31篇
  1978年   16篇
  1977年   7篇
  1976年   6篇
  1958年   24篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
951.
通过模拟气候变化,探究短期增温和降水减少对沙质草地土壤微生物量碳氮及酶活性的影响,揭示沙质草地土壤微生物量碳氮和酶活性对短期气候变化的响应规律。结果表明:(1)短期增温和降水减少对土壤微生物量碳氮和酶活性均产生显著影响。(2)在自然温度下,与自然降水相比,降水减少40%时土壤微生物量碳(MBC)和微生物氮(MBN)含量最高,增幅分别为87.9%和98.8%;降水减少60%时土壤碱性蛋白酶(S-ALPT)活性最低,降幅达32.8%。(3)在增温条件下,与自然降水相比,降水减少40%时土壤MBC和MBN含量最低,降幅分别为25.67%和48.16%,土壤脲酶(S-UE)活性最高,增幅20.42%。(4)土壤pH与3种土壤酶活性正相关,与土壤微生物量碳氮负相关。土壤微生物量碳氮与土壤纤维素酶(S-CL)活性负相关,与S-UE、S-ALPT活性正相关。  相似文献   
952.
As an important innovation flow, venture capital has been examined in urban network research. However, the segmentation of capital categories and the cross-scale connection of capital remain scarcely analyzed. This study focuses on the structure and industry differentiation of venture capital flows in the Guangdong-Hong Kong-Macao Greater Bay Area(GBA) and its cross-scale network characteristics. Based on a venture capital database covering capital amount, investment subject address information,...  相似文献   
953.
Surface roughness and slope gradient are two important factors influencing soil erosion. The objective of this study was to investigate the interaction of surface roughness and slope gradient in controlling soil loss from sloping farmland due to water erosion on the Loess Plateau, China. Following the surface features of sloping farmland in the plateau region, we manually prepared rough surfaces using four tillage practices (contour drilling, artificial digging, manual hoeing, and contour plowing), with a smooth surface as the control measure. Five slope gradients (3°, 5°, 10°, 15°, and 20°) and two rainfall intensities (60 and 90 mm/hr) were considered in the artificial rainfall simulation experiment. The results showed that the runoff volume and sediment yield increased with increasing slope gradient under the same tillage treatment. At gentle slope gradients (e.g., 3° and 5°), the increase in surface roughness prevented the runoff and sediment production, that is, the surface roughness reduced the positive effect of slope gradient on the runoff volume and sediment yield to a certain extent. At steep slope gradients, however, the enhancing effect of slope gradient on soil erosion gradually increased and surpassed the reduction effect of surface roughness. This study reveals the existence of a critical slope gradient that influences the interaction of surface roughness and slope gradient in controlling soil erosion on sloping farmland. If the slope gradient is equal to or less than the critical value, an increase in surface roughness would decrease soil erosion. Otherwise, the increase in surface roughness would be ineffective for preventing soil erosion. The critical slope gradient would be smaller under higher rainfall intensity. These findings are helpful for us to understand the process of soil erosion and relevant for supporting soil and water conservation in the Loess Plateau region of China.  相似文献   
954.
The use of heavy machinery during opencast coal mining can result in soil compaction. Severe soil compaction has a negative impact on the transport of water and gas in the soil. In addition, rainfall intensity has traditionally been related to soil surface sealing affecting water transport. To assess the effects of rainfall intensity and compaction on water infiltration and surface runoff in an opencast coal mining area, the disturbed soils from the Antaibao opencast mine in Shanxi Province, China, were collected. Four soil columns with different bulk densities (i.e., 1.4 g cm-3, 1.5 g cm-3, 1.6 g cm-3, and 1.7 g cm-3) were designed, and each column received water five times at rainfall intensities of 23.12, 28.91, 38.54, 57.81, and 115.62 mm hr-1. The total volume of runoff, the time to start runoff, and the volumetric water contents at the depths of 5 cm, 15 cm, 25 cm, 35 cm, 45 cm, 55 cm, and 65 cm were measured. Under the same soil bulk density, high rainfall intensity reduced infiltration, increased surface runoff, and decreased the magnitude of change in the volumetric water contents at different depths. Under the same rainfall intensity, the soil column with a high bulk density showed relatively low water infiltration. Treatments 3 (1.6 g cm-3) and 4 (1.7 g cm-3) had very small changes in volumetric water contents of the profiles even under a lower rainfall intensity. Severe soil compaction was highly prone to surface runoff after rainfall. Engineering and revegetation measures are available to improve compacted soil quality in dumps. Our results provide a theoretical basis for the management of land reclamation in opencast coal mine areas.  相似文献   
955.
Qihua Ran  Feng Wang  Jihui Gao 《水文研究》2020,34(23):4526-4540
Rainfall characteristics are key factors influencing infiltration and runoff generation in catchment hydrology, particularly for arid and semiarid catchments. Although the effect of storm movement on rainfall-runoff processes has been evaluated and emphasized since the 1960s, the effect on the infiltration process has barely been considered. In this study, a physically based distributed hydrological model (InHM) was applied to a typical semi-arid catchment (Shejiagou, 4.26 km2) located in the Loess Plateau, China, to investigate the effect of storm movement on infiltration, runoff and soil erosion at the catchment scale. Simulations of 84 scenarios of storm movement were conducted, including storms moving across the catchment in both the upstream and downstream directions along the main channel, while in each direction considering four storm moving speeds, three rainfall depths and two storm ranges. The simulation results showed that, on both the hillslopes facing downstream (facing south) and in the main channel, the duration of the overland flow process under the upstream-moving storms was longer than that under the downstream-moving storms. Thus, the duration and volume of infiltration under upstream-moving storms were larger in these areas. For the Shejiagou catchment, as there are more hillslopes facing downstream, more infiltration occurred under the upstream-moving storms than the downstream-moving storms. Therefore, downstream-moving storms generated up to 69% larger total runoff and up to 351% more soil loss in the catchment than upstream-moving storms. The difference in infiltration between the storms moving upstream and downstream decreased as the storm moving speed increased. The relative difference in total runoff and sediment yield between the storms moving upstream and downstream decreased with increasing rainfall depth and storm speed. The results of this study revealed that the infiltration differences under moving storms largely influenced the total runoff and sediment yield at the catchment scale, which is of importance in runoff prediction and flood management. The infiltration differences may be a potential factor leading to different groundwater, vegetation cover and ecology conditions for the different sides of the hillslopes.  相似文献   
956.
Mountain and lowland watersheds are two distinct geographical units with considerably different hydrological processes. Understanding their hydrological processes in the context of future climate change and land use scenarios is important for water resource management. This study investigated hydrological processes and their driving factors and eco-hydrological impacts for these two geographical units in the Xitiaoxi watershed, East China, and quantified their differences through hydrological modelling. Hydrological processes in 24 mountain watersheds and 143 lowland watersheds were simulated based on a raster-based Xin'anjiang model and a Nitrogen Dynamic Polder (NDP) model, respectively. These two models were calibrated and validated with an acceptable performance (Nash-Sutcliffe efficiency coefficients of 0.81 and 0.50, respectively) for simulating discharge for mountain watersheds and water level for lowland watersheds. Then, an Indicators of Hydrological Alteration (IHA) model was used to help quantify the alterations to the hydrological process and their resulting eco-hydrological impacts. Based on the validated models, scenario analysis was conducted to evaluate the impacts of climate and land use changes on the hydrological processes. The simulation results revealed that (a) climate change would cause a larger increase in annual runoff than that under land use scenario in the mountain watersheds, with variations of 19.9 and 10.5% for the 2050s, respectively. (b) Land use change was more responsible for the streamflow increment than climate change in the lowland watersheds, causing an annual runoff to increase by 27.4 and 16.2% for the 2050s, respectively. (c) Land use can enhance the response of streamflow to the climatic variation. (d) The above-mentioned hydrological variations were notable in flood and dry season in the mountain watersheds, and they were significant in rice season in the lowland watersheds. (e) Their resulting degradation of ecological diversity was more susceptible to future climate change in the two watersheds. This study demonstrated that mountain and lowland watersheds showed distinct differences in hydrological processes and their responses to climate and land use changes.  相似文献   
957.
This paper focuses on the efficiency of finite discrete element method (FDEM) algorithmic procedures in massive computers and analyzes the time-consuming part of contact detection and interaction computations in the numerical solution. A detailed operable GPU parallel procedure was designed for the element node force calculation, contact detection, and contact interaction with thread allocation and data access based on the CUDA computing. The emphasis is on the parallel optimization of time-consuming contact detection based on load balance and GPU architecture. A CUDA FDEM parallel program was developed with the overall speedup ratio over 53 times after the fracture from the efficiency and fidelity performance test of models of in situ stress, UCS, and BD simulations in Intel i7-7700K CPU and the NVIDIA TITAN Z GPU. The CUDA FDEM parallel computing improves the computational efficiency significantly compared with the CPU-based ones with the same reliability, providing conditions for achieving larger-scale simulations of fracture.  相似文献   
958.
Li  Ming  Zhang  Fan  Barnes  Samuel  Wang  Xiaohong 《Natural Hazards》2020,103(2):2561-2588
Natural Hazards - Hurricane Isabel (2003) generated record flooding around Chesapeake Bay and caused extensive damage in rural Eastern Shore of Maryland and metropolitan cities like Baltimore....  相似文献   
959.
合肥盆地钻井地层的同位素测年与地层划分   总被引:3,自引:0,他引:3  
合肥盆地内部中、新界地层大面积被第四系覆盖,其地层的时代与划分主要依赖已有的6口深井地层资料。由于缺乏可靠的化石记录,这6口深井地层时代与划分一直存在着很大的分歧,制约了对该盆地的油气勘探与远景评价。本文利用这6口深井泥岩类岩屑中自生伊利石,在其结晶度分析基础上,进行了K-Ar同位素测年,成功地获得了不同深度上的地层形成时代。据此地层年龄,文中对这6口深井所钻遇的地层进行了重新的划分。  相似文献   
960.
长江流域沿江镉异常示踪与追源的战略与战术   总被引:21,自引:1,他引:21       下载免费PDF全文
正在进行的多目标地球化学调查成果显示,长江流域存在全流域的Cd异常。长江流域Cd异常示踪与追源研究的长期目标是查明长江流域沿江各主要支流(汇水面积大于5000km2)Cd等重金属元素的物质来源、迁移形式和输入/输出通量、分辨自然源与人为源各自所占份额,建立沿江各支流Cd时空演化模型,监测它的未来发展趋势,对潜在生态效应进行预警预测;短期目标是针对Cd异常的重点地区,如长江源头、三峡库区、湘江流域、江淮流域、长江三角洲及流域内的4大淡水湖泊,查明Cd异常的来源,重建Cd异常形成的地球化学记录,评估可预见的将来(如10~50年)Cd异常的生态效应。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号