首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1127篇
  免费   67篇
  国内免费   8篇
测绘学   19篇
大气科学   76篇
地球物理   298篇
地质学   377篇
海洋学   95篇
天文学   221篇
综合类   7篇
自然地理   109篇
  2021年   17篇
  2020年   22篇
  2019年   22篇
  2018年   26篇
  2017年   30篇
  2016年   32篇
  2015年   35篇
  2014年   33篇
  2013年   55篇
  2012年   42篇
  2011年   59篇
  2010年   66篇
  2009年   59篇
  2008年   73篇
  2007年   45篇
  2006年   53篇
  2005年   44篇
  2004年   34篇
  2003年   47篇
  2002年   52篇
  2001年   21篇
  2000年   9篇
  1999年   14篇
  1998年   14篇
  1997年   15篇
  1996年   16篇
  1995年   14篇
  1994年   15篇
  1993年   19篇
  1992年   10篇
  1991年   6篇
  1990年   9篇
  1989年   9篇
  1988年   7篇
  1987年   13篇
  1986年   8篇
  1985年   16篇
  1984年   14篇
  1983年   13篇
  1982年   15篇
  1981年   15篇
  1980年   11篇
  1979年   7篇
  1978年   13篇
  1977年   8篇
  1976年   5篇
  1975年   5篇
  1974年   6篇
  1973年   8篇
  1970年   6篇
排序方式: 共有1202条查询结果,搜索用时 15 毫秒
981.
Knowledge of present‐day communities and ecosystems resembling those reconstructed from the fossil record can help improve our understanding of historical distribution patterns and species composition of past communities. Here, we use a unique data set of 570 plots explored for vascular plant and 315 for land‐snail assemblages located along a 650‐km‐long transect running across a steep climatic gradient in the Russian Altai Mountains and their foothills in southern Siberia. We analysed climatic and habitat requirements of modern populations for eight land‐snail and 16 vascular plant species that are considered characteristic of the full‐glacial environment of central Europe based on (i) fossil evidence from loess deposits (snails) or (ii) refugial patterns of their modern distributions (plants). The analysis yielded consistent predictions of the full‐glacial central European climate derived from both snail and plant populations. We found that the distribution of these 24 species was limited to the areas with mean annual temperature varying from ?6.7 to 3.4 °C (median ?2.5 °C) and with total annual precipitation varying from 137 to 593 mm (median 283 mm). In both groups there were species limited to areas with colder and drier macroclimates (e.g. snails Columella columella and Pupilla loessica, and plants Kobresia myosuroides and Krascheninnikovia ceratoides), whereas other species preferred areas with relatively warmer and/or moister macroclimates (e.g. snails Pupilla turcmenica and P. alpicola, and plants Artemisia laciniata and Carex capillaris). Analysis of climatic conditions also indicated that distributional shifts of the studied species during the Pleistocene/Holocene transition were closely related to their climatic tolerances. Our results suggest that the habitat requirements of southern Siberian populations can provide realistic insights into the reconstruction of Eurasian, especially central European, glacial environments. Data obtained from modern populations also highlight the importance of wet habitats as refugia in the generally dry full‐glacial landscape.  相似文献   
982.
983.
Plant source water identification using stable isotopes is now a common practice in ecohydrological process investigations. Notwithstanding, little critical evaluation of the approaches for source apportionment have been conducted. Here, we present a critical evaluation of the main methods used for source apportionment between vadose and saturated zone water: simple mass balance and Bayesian mixing models. We leverage new isotope stem water samples from a diverse set of tree species in a strikingly uniform terrain and soil conditions at the Christchurch Botanic Garden, New Zealand. Our results show that using δ2H alone in a simple, two‐source mass balance approach leads to erroneous results, particularly an apparent overestimation of groundwater contribution to xylem. Alternatively, using both δ2H and δ18O in a Bayesian inference framework improves the source water estimates and is more useful than the simple mass balance approach, particularly when soil and groundwater contributions are relatively disproportionate. We suggest that plant source water quantification methods should take into consideration the possible effects of 2H/1H fractionation. The Bayesian inference approach used here may be less sensitive to 2H/1H fractionation effects than simple mass balance methods.  相似文献   
984.
Climate change and thawing permafrost in the Arctic will significantly alter landscape hydro‐geomorphology and the distribution of soil moisture, which will have cascading effects on climate feedbacks (CO2 and CH4) and plant and microbial communities. Fundamental processes critical to predicting active layer hydrology are not well understood. This study applied water stable isotope techniques (δ2H and δ18O) to infer sources and mixing of active layer waters in a polygonal tundra landscape in Barrow, Alaska (USA), in August and September of 2012. Results suggested that winter precipitation did not contribute substantially to surface waters or subsurface active layer pore waters measured in August and September. Summer rain was the main source of water to the active layer, with seasonal ice melt contributing to deeper pore waters later in the season. Surface water evaporation was evident in August from a characteristic isotopic fractionation slope (δ2H vs δ18O). Freeze‐out isotopic fractionation effects in frozen active layer samples and textural permafrost were indistinguishable from evaporation fractionation, emphasizing the importance of considering the most likely processes in water isotope studies, in systems where both evaporation and freeze‐out occur in close proximity. The fractionation observed in frozen active layer ice was not observed in liquid active layer pore waters. Such a discrepancy between frozen and liquid active layer samples suggests mixing of meltwater, likely due to slow melting of seasonal ice. This research provides insight into fundamental processes relating to sources and mixing of active layer waters, which should be considered in process‐based fine‐scale and intermediate‐scale hydrologic models. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
985.
Rapid and high-magnitude North Atlantic climate oscillations following the Last Glacial Maximum have been correlated to climate change events in western North America. However, the strength of teleconnections between the North Atlantic and the interior of western North America remains poorly understood. We present a U-series calibrated speleothem record from Timpanogos Cave National Monument, located at 2040 m asl in the Wasatch Mountains of Utah, spanning 13.5–10.6 ka. Additionally, we carried out a climate reconstruction for a coeval glacier advance in the Wind River Range of Wyoming. Our results indicate that between 13.5 and 12.8 ka, the Wasatch was probably first cool and dry and then warmed. After 12.8 ka, our record suggests cool and/or wetter conditions followed by reduced moisture until 11.8 ka, followed by an early Holocene wet period. The Timpanogos record exhibits few similarities with those from the North Atlantic. Climate reconstructions of the Titcomb Basin glacier suggest modest temperature depressions relative to modern (<−3 °C) were necessary to sustain the glacier with a moderate increase in precipitation (>150%). The high-altitude speleothem record presented here provides a valuable basis for understanding latest Pleistocene–early Holocene glacial episodes in western North America.  相似文献   
986.
987.
988.
In 2006, NASA's Stardust spacecraft delivered to Earth dust particles collected from the coma of comet 81P/Wild 2, with the goal of furthering the understanding of solar system formation. Stardust cometary samples were collected in a low‐density, nanoporous silica aerogel making their study technically challenging. This article demonstrates the identification, exposure, and elemental composition analysis of particles analogous to those collected by NASA's Stardust mission using in‐situ SEM techniques. Backscattered electron imaging is shown by experimental observation and Monte Carlo simulation to be suitable for locating particles of a range of sizes relevant to Stardust (down to submicron diameters) embedded within silica aerogel. Selective removal of the silica aerogel encapsulating an embedded particle is performed by cryogenic NF3‐mediated electron beam–induced etching. The porous, low‐density nature of the aerogel results in an enhanced etch rate compared with solid material, making it an effective, nonmechanical method for the exposure of particles. After exposure, elemental composition of the particle was analyzed by energy‐dispersive X‐ray spectroscopy using a high spectral resolution microcalorimeter. Signals from fluorine contamination are shown to correspond to nonremoved silica aerogel and only in residual concentrations.  相似文献   
989.
We determined the chlorine isotope composition of 16 Martian meteorites using gas source mass spectrometry on bulk samples and in situ secondary ion microprobe analysis on apatite grains. Measured δ37Cl values range from ?3.8 to +8.6‰. The olivine‐phyric shergottites are the isotopically lightest samples, with δ37Cl mostly ranging from ?4 to ?2‰. Samples with evidence for a crustal component have positive δ37Cl values, with an extreme value of 8.6‰. Most of the basaltic shergottites have intermediate δ37Cl values of ?1 to 0‰, except for Shergotty, which is similar to the olivine‐phyric shergottites. We interpret these data as due to mixing of a two‐component system. The first component is the mantle value of ?4 to ?3‰. This most likely represents the original bulk Martian Cl isotope value. The other endmember is a 37Cl‐enriched crustal component. We speculate that preferential loss of 35Cl to space has resulted in a high δ37Cl value for the Martian surface, similar to what is seen in other volatile systems. The basaltic shergottites are a mixture of the other two endmembers. The low δ37Cl value of primitive Mars is different from Earth and most chondrites, both of which are close to 0‰. We are not aware of any parent‐body process that could lower the δ37Cl value of the Martian mantle to ?4 to ?3‰. Instead, we propose that this low δ37Cl value represents the primordial bulk composition of Mars inherited during accretion. The higher δ37Cl values seen in many chondrites are explained by later incorporation of 37Cl‐enriched HCl‐hydrate.  相似文献   
990.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号