首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   657篇
  免费   15篇
  国内免费   18篇
测绘学   13篇
大气科学   102篇
地球物理   133篇
地质学   192篇
海洋学   188篇
天文学   30篇
综合类   10篇
自然地理   22篇
  2023年   5篇
  2022年   6篇
  2021年   14篇
  2020年   13篇
  2019年   10篇
  2018年   32篇
  2017年   35篇
  2016年   48篇
  2015年   42篇
  2014年   39篇
  2013年   43篇
  2012年   34篇
  2011年   55篇
  2010年   47篇
  2009年   40篇
  2008年   29篇
  2007年   31篇
  2006年   28篇
  2005年   25篇
  2004年   20篇
  2003年   20篇
  2002年   9篇
  2001年   13篇
  2000年   6篇
  1999年   8篇
  1998年   5篇
  1997年   9篇
  1996年   1篇
  1995年   2篇
  1994年   3篇
  1993年   4篇
  1992年   3篇
  1990年   1篇
  1988年   2篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1981年   1篇
  1973年   1篇
  1972年   1篇
排序方式: 共有690条查询结果,搜索用时 31 毫秒
671.
In this study, we investigated the impact of the Atlantic decadal-scale sea surface temperature (SST) variation on the tropical Pacific climate using a Atmospheric General Circulation Model (AGCM). During the recent decade from 2000 to 2010 when the Atlantic SST has sharply increased, observations have shown that the strong easterly and increased precipitation anomalies appeared over the western-central Pacific. It is different from the conventional Gilltype response in which the easterly due to heating in the Atlantic is expected to be extended to the Indian Ocean. We have found that the warm pool over the western Pacific plays an important role in enhancing the atmospheric response to the Atlantic SST forcing in the Pacific basin. Simplified Aqua planet GCM experiments showed that the central location of the anomalous easterly over the Pacific produced by the Atlantic SST forcing highly depends on the location of the idealized warm pool. The reason for this is because the moisture feedback is strongest over the warm pool region, which leads to additional local anomalous convergence, and therefore the easterly produced by the Atlantic SST forcing is enhanced only over the east of the warm pool region.  相似文献   
672.
Choi  Seonghu  Choi  Man-Sik  Joe  Dongjin  Park  Sojung  Kim  Jinwoo  Ra  Kongtae  Kim  Intae  Kim  Kyung-Tae  Lee  Kyoung-Seok  Lim  Jean-Sun 《Ocean Science Journal》2022,57(3):436-450
Ocean Science Journal - The spatial distributions of dissolved lead (Pb) concentrations and stable Pb isotope ratios in the Ulleung Basin, East/Japan Sea, were investigated to identify the Pb...  相似文献   
673.
Rock mass rating (RMR) values along additional drifts that are to be constructed during mine site redevelopment (Gagok mine, Korea) were estimated using multiple criteria indicator Kriging with borehole RMR and electrical resistivity tomography data. This study outlines two potential correction methods that supplement indicator Kriging and that can reduce error, allowing more accurate estimation of RMR values. The correction methods used a filtering of indirect data affected by drifts (FIED) method to reduce uncertainties and errors within electrical resistivity tomography data caused by changes in setup and the location of existing drifts. In addition, a correction indicating accurate representation of indirect data (CARI) method was used to resolve distortions in drilling log results. This meant that 73 % of the estimated RMR values were assigned to the correct RMR class, with only 1 % of these values being overestimated. The sensitivity of the FIED method was 4 %, with the linear CARI method having a sensitivity of 56–60 % and the logarithmic CARI method having a sensitivity of 61–65 %.  相似文献   
674.
Although the loads applied on piles are usually a combination of both vertical and lateral loads, very limited experimental research has been done on the response of pile groups subjected to combined loads. Due to pile–soil–pile interaction in pile groups, the response of a pile group may differ substantially from that of a single pile. This difference depends on soil state and pile spacing. This paper presents results of experiments designed to investigate pile interaction effects on the response of pile groups subjected to both axial and lateral loads. The experiments were load tests performed on model pile groups (2 × 2 pile groups) in calibration chamber sand samples. The model piles were driven into the sand samples prepared with different relative densities using a sand pluviator. The combined load tests were performed on the model pile groups subjected to different axial load levels, i.e., 0 (pure lateral loading), 25, 50, and 75% of the ultimate axial load capacity of the pile groups, defined as the load corresponding to a settlement of 10% of the model pile diameter. The combined load test results showed that the bending moment and lateral deflection at the head of the piles increased substantially for tests performed in the presence of axial loads, suggesting that the presence of axial loads on groups of piles driven in sand is detrimental to their lateral capacity.  相似文献   
675.
Flexible steel barriers are commonly constructed on steep hillsides to mitigate rockfall. The evaluation of the dynamic response of proprietary flexible barriers is conventionally performed using full-scale field tests by dropping a weight onto the barriers in accordance with the European test standard ETAG 27. The weight typically has a spherical or polyhedral shape and cannot reproduce more complex rockfall scenarios encountered in the field. A rigid slab may load a barrier over a larger area and its effect has not been investigated. In this study, a calibrated three-dimensional finite-element model was developed to study the performance of vertically and horizontally orientated rockfall barriers under concentrated areal impact loads. A new bilinear force-displacement model was incorporated into the model to simulate the behavior of the energy-dissipating devices on the barriers. The effect of different weight geometries was studied by considering impacts by a rigid single spherical boulder and a rigid slab. Results reveal that areal loading induced by a rigid slab increases the loading on the barrier foundation by up to 40 % in both horizontally and vertically positioned barriers when compared to a concentrated load scenario with a single boulder. This indicates that barriers tested under the current test standard does not give the worst-case scenario in terms of foundation loads, and barrier designers should take into account the possible effect of increased foundation loads by reinforcing the barrier posts and/or increasing their spacing.  相似文献   
676.
Effective design of mitigation measures against debris flow hazards remains a challenging geotechnical problem. At present, a pseudo-static approach is commonly used for the calculation of impact load acting on a rigid debris-resisting barrier. The impact load is normally calculated based on the maximum velocity observed in the transportation zone under free-field conditions without considering debris-barrier interaction. In reality, the impact load acting on a barrier varies with the change of debris momentum flux but this is seldom considered in barrier design. To provide a scientific basis for assessing debris momentum flux during impact, this paper presents results from a study of debris-barrier interaction using physical flume modelling. This study showed that, following the first stage of impact, the accumulated debris behind a barrier formed a stationary zone and caused the remaining debris to slow down in a run-up process. In the experiments, the peak debris momentum was 30 % lower compared to that observed under free-field conditions. A new momentum-based model was developed to take into account attenuation of momentum flux for predicting debris impact load on rigid barriers. The new rationalised model was assessed using data from the notable Yu Tung Road debris flow in Hong Kong. The assessment showed that the design bending moment at the base of the barrier wall could be reduced more than 30 % using the proposed model, compared with the current design approach. The adoption of the proposed model could offer a new opportunity for practitioners to optimise the design of rigid barriers.  相似文献   
677.
Macrobenthic fauna in an estuarine Gwangyang Bay, southern Korean coast, were investigated to uncover recent variations in their community structures. In the study area, macrobenthic faunal communities were mainly composed of polychaete worms which were the most abundant faunal group with the highest values in species number and density, while mollusks accounted for the highest proportion in total biomass. There was no clear seasonal difference in species richness during the two year period of the investigation, but the mean density and biomass increased every spring and summer due to the mass recruitment of Theora fragilis. The Shannon’s diversity index (H') was more than 2.0 during most sampling seasons and did not show any significant seasonal difference except for the data in August, 2011 when azoic conditions occurred. The community structures of macrobenthos in Gwangyang Bay did not show any remarkable change in the dominance of the two top dominant species, Scoletoma longifolia and Heteromastus filiformis, which abundantly occurred in all seasons, except for the abundance peaks associated with high occurrence of T. fragilis and Paraprionospio cordifolia, especially in spring and summer and in autumn, respectively. These fauna changes reflected the changes in the macrobenthic community health status in Gwangyang Bay, where stable conditions and a healthy status prevailed in winter, but a slightly disturbed status prevailed from spring to autumn.  相似文献   
678.
Mediterranean (blue) mussels (Mytilus galloprovincialis) collected from a reference site were transplanted to 15 stations in coastal areas around Ulsan and Onsan Bays, an extensively metal polluted area in Korean coastal waters, to assess metal contamination in the coastal oceans of Korea. During the biomonitoring periods (June 30 to July 20, 2003; 21 days), transplanted mussels, seawater, and particulate materials were collected for analysis of 15 metals (Ag, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Sb, Se, Sn, and Zn). Transplanted mussels showed metal enrichment compared to initial concentrations and spatial gradients consistent with dissolved and/or particulate metal concentrations in seawaters. Based on Q mode factor analysis, stations were clustered into three groups. The first group, located on Onsan Bay, showed high Ag, Cd, Cu, Hg, Pb, Sb and Zn enrichment, presumably arising from non-ferrous metal refineries and chemical industries in this area. The second group was located near the mouth of the Oehwang River and was enriched in Co from petrochemical industries. The third group comprised a site intermediate between Group 1 and Group 2, an isolated station with independent metal sources located in Jangsaengpo harbor, where a number of ship repairing and building companies operate, and a less contaminated station near a small fishing village. Metal accumulation rates (%·day-1) in mussels were estimated to be between 8% (Cr) and 281% (Pb), based on accumulated metal concentrations over 21 days. The active biomonitoring technique using M. galloprovincialis demonstrated here is a useful monitoring method because it reflects the present status of seawaters; furthermore, physiological factors can be standardized, and bioavailable and time-integrated metal concentrations can be obtained. Furthermore, this method can be applied even in coastal seawaters so heavily contaminated that living organisms would not normally survive.  相似文献   
679.
A species of the genus Ammonicera Vayssière, 1893 collected from coralline algae communities in Jeju Island, South Korea, is described as a new species, A. aurea, for science. Its morphological characters are described and illustrated by SEM micrographs. This new species can be clearly distinguished from other Ammonicera species from the Pacific Ocean by the presence of a spiral cord and about 25 slightly-elevated axial ribs, resulting in about 25 nodules at intersecting points of the cord and ribs on the last whorl of the teleoconch.  相似文献   
680.
One strand of research relates the magnitude of severe weather disasters to climatic and human development factors; another highlights dramatic growth in catastrophe losses. However, there have been few attempts to put the two strands together. Here we use an explicit modeling framework to determine the contribution of climate variability relative to human factors in reported catastrophe losses. We then examine how future climate change can be expected to affect losses from natural disasters. Simultaneous regression models are constructed from three equations in which the dependent variables are U.S. flood loss, U.S. hurricane loss and U.S. catastrophe loss. Then two kinds of simulation under two climate change scenarios explore how climate change would affect losses. The climate change scenarios respectively project 13.5% and 21.5% increases in annual precipitation. The first simulation increases only the mean value of annual precipitation; the second simulation assumes that the mean and standard deviation of annual precipitation change in the same proportion. Results show that the growth in reported losses from weather-related natural disasters is due mainly to three socioeconomic factors: inflation, population growth and growth in per capita real wealth. However, weather variables such as precipitation and the number of hurricanes per period also clearly affect losses. The three stage least squares (3SLS) simultaneous equation model shows that a 1% increase in annual precipitation would enlarge catastrophe loss by as much as 2.8%. These findings are suggestive as planning signals to decision makers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号