首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4508篇
  免费   1319篇
  国内免费   37篇
测绘学   92篇
大气科学   133篇
地球物理   2341篇
地质学   1963篇
海洋学   308篇
天文学   677篇
综合类   6篇
自然地理   344篇
  2021年   62篇
  2020年   78篇
  2019年   214篇
  2018年   233篇
  2017年   321篇
  2016年   383篇
  2015年   383篇
  2014年   407篇
  2013年   506篇
  2012年   352篇
  2011年   342篇
  2010年   319篇
  2009年   261篇
  2008年   287篇
  2007年   211篇
  2006年   172篇
  2005年   186篇
  2004年   137篇
  2003年   155篇
  2002年   132篇
  2001年   119篇
  2000年   114篇
  1999年   42篇
  1998年   23篇
  1997年   18篇
  1996年   19篇
  1995年   18篇
  1994年   21篇
  1993年   10篇
  1992年   16篇
  1991年   25篇
  1990年   16篇
  1989年   14篇
  1988年   10篇
  1987年   19篇
  1986年   15篇
  1985年   17篇
  1984年   25篇
  1983年   21篇
  1982年   18篇
  1981年   16篇
  1980年   12篇
  1978年   11篇
  1977年   10篇
  1976年   9篇
  1975年   15篇
  1974年   9篇
  1973年   11篇
  1971年   7篇
  1970年   7篇
排序方式: 共有5864条查询结果,搜索用时 15 毫秒
191.
The petrology and mineralogy of shock melt veins in the L6 ordinary chondrite host of Villalbeto de la Peña, a highly shocked, L chondrite polymict breccia, have been investigated in detail using scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, and electron probe microanalysis. Entrained olivine, enstatite, diopside, and plagioclase are transformed into ringwoodite, low‐Ca majorite, high‐Ca majorite, and an assemblage of jadeite‐lingunite, respectively, in several shock melt veins and pockets. We have focused on the shock behavior of diopside in a particularly large shock melt vein (10 mm long and up to 4 mm wide) in order to provide additional insights into its high‐pressure polymorphic phase transformation mechanisms. We report the first evidence of diopside undergoing shock‐induced melting, and the occurrence of natural Ca‐majorite formed by solid‐state transformation from diopside. Magnesiowüstite has also been found as veins injected into diopside in the form of nanocrystalline grains that crystallized from a melt and also occurs interstitially between majorite‐pyrope grains in the melt‐vein matrix. In addition, we have observed compositional zoning in majorite‐pyrope grains in the matrix of the shock‐melt vein, which has not been described previously in any shocked meteorite. Collectively, all these different lines of evidence are suggestive of a major shock event with high cooling rates. The minimum peak shock conditions are difficult to constrain, because of the uncertainties in applying experimentally determined high‐pressure phase equilibria to complex natural systems. However, our results suggest that conditions between 16 and 28 GPa and 2000–2200 °C were reached.  相似文献   
192.
Single crystal (U‐Th)/He dating has been undertaken on 21 detrital zircon grains extracted from a core sample from Ocean Drilling Project (ODP) site 1073, which is located ~390 km northeast of the center of the Chesapeake Bay impact structure. Optical and electron imaging in combination with energy dispersive X‐ray microanalysis (EDS) of zircon grains from this late Eocene sediment shows clear evidence of shock metamorphism in some zircon grains, which suggests that these shocked zircon crystals are distal ejecta from the formation of the ~40 km diameter Chesapeake Bay impact structure. (U‐Th/He) dates for zircon crystals from this sediment range from 33.49 ± 0.94 to 305.1 ± 8.6 Ma (2σ), implying crystal‐to‐crystal variability in the degree of impact‐related resetting of (U‐Th)/He systematics and a range of different possible sources. The two youngest zircon grains yield an inverse‐variance weighted mean (U‐Th)/He age of 33.99 ± 0.71 Ma (2σ uncertainties n = 2; mean square weighted deviation = 2.6; probability [P] = 11%), which is interpreted to be the (U‐Th)/He age of formation of the Chesapeake Bay impact structure. This age is in agreement with K/Ar, 40Ar/39Ar, and fission track dates for tektites from the North American strewn field, which have been interpreted as associated with the Chesapeake Bay impact event.  相似文献   
193.
194.
The alkali element K is moderately volatile and fluid mobile; thus, it can be influenced by both primary processes (evaporation and recondensation) in the solar nebula and secondary processes (thermal and aqueous alteration) in the parent body. Since these primary and secondary processes would induce different isotopic fractionations, K isotopes could become a potential tracer to distinguish them. Using recently developed methods with improved precision (0.05‰, 95% confidence interval), we systematically measured the K isotopic compositions and major/trace elemental compositions of chondritic components (18 chondrules, 3 CAIs, 2 matrices, and 5 bulks) in the carbonaceous chondrite fall Allende. Among all the components analyzed in this study, CAIs, which formed initially under high‐temperature conditions in the solar nebula and were dominated by nominally K‐free refractory minerals, have the highest K2O content (average 0.53 wt%) and have K isotope compositions most enriched in heavy isotopes (δ41K: ?0.30 to ?0.25‰). Such an observation is consistent with previous petrologic studies that show CAIs in Allende have undergone alkali enrichment during metasomatism. In contrast, chondrules contain lower K2O content (0.003–0.17 wt%) and generally lighter K isotope compositions (δ41K: ?0.87‰ to ?0.24‰). The matrix and bulks are nearly identical in K2O content and K isotope compositions (0.02–0.05 wt%; δ41K: ?0.62 to ? 0.46‰), which are, as expected, right in the middle of CAIs and chondrules. This strongly indicates that most of the chondritic components of Allende suffered aqueous alteration and their K isotopic compositions are the ramification of Allende parent‐body processing instead of primary nebular signatures. Nevertheless, we propose the small K isotope fractionations observed (< 1‰) among Allende components are likely similar to the overall range of K isotopic fractionation that occurred in nebular environment. Furthermore, the K isotope compositions seen in the components of Allende in this study are consistent with MC‐ICP‐MS analyses of the components in ordinary chondrites, which also show an absence of large (10‰) isotope fractionations. This is not expected as evaporation experiments in nebular conditions suggest there should be large K isotopic fractionations. Nevertheless, possible nebular processes such as chondrules back exchanging with ambient gas when they formed could explain this lack of large K isotopic variation.  相似文献   
195.
The Central Africa Fold Belt (CAFB) is a collision belt endowed with gold deposits in Eastern Cameroon area mined for about 50 years. However, favorable areas for gold exploration are poorly known. This paper presents (1) the kinematics of the brittle deformation in the Kékem area in the SW portion of the Central Cameroon Shear Zone and (2) constraints gold mineralization events with respect to the collisional evolution of the CAFB. The authors interpret that the conjugate ENE to E and NNW to NW trending lineament corresponds to the synthetic (R) and the antithetic (R’) shears, which accompanied the dextral slip along the NE to ENE striking shear. The latter coincides with the last 570–552 Ma D3 dextral simple shear-dominated transpression, which is parallel to the Bétaré Oya shear zone hosting gold deposits. Gold mineralizations, which mainly occurred during the last dextral shearing, are disseminated within quartz veins associated to Riedel’s previous structures reactivated due to late collisional activities of the CAFB as brittle deformation. Gold mineralizations occurred mainly during the 570–552 Ma D3 event. The reactivation, which might be due to dextral simple shear during mylonitzation, plausibly remobilized the early gold deposits hosted in syn-compressional rocks and/or possibly focused deep-sourced fluid mixed with those released by dehydration. Therefore, the Central Cameroon Shear Zone where Kékem is located, and which shows similar petrographical and structural features to those controling Batouri gold district, is a target area for gold exploration in Cameroon.  相似文献   
196.
Northwest Africa (NWA) 11042 is a heavily shocked achondrite with medium‐grained cumulate textures. Its olivine and pyroxene compositions, oxygen isotopic composition, and chromium isotopic composition are consistent with L chondrites. Sm‐Nd dating of its primary phases shows a crystallization age of 4100 ± 160 Ma. Ar‐Ar dating of its shocked mineral maskelynite reveals an age of 484.0 ± 1.5 Ma. This age coincides roughly with the breakup event of the L chondrite parent body evident in the shock ages of many L chondrites and the terrestrial record of fossil L chondritic chromite. NWA 11042 shows large depletions in siderophile elements (<0.01×CI) suggestive of a complex igneous history involving extraction of a Fe‐Ni‐S liquid on the L chondrite parent body. Due to its relatively young crystallization age, the heat source for such an igneous process is most likely impact. Because its mineralogy, petrology, and O isotopes are similar to the ungrouped achondrite NWA 4284 (this work), the two meteorites are likely paired and derived from the same parent body.  相似文献   
197.
We hypothesized that temporal variation in fish species composition and community structure in a low complexity habitat in the Pueblo Viejo Lagoon, Mexico, is influenced by diel light/dark cycles and tidal stage, and by seasonal changes in salinity and temperature. We collected a total of 17,661 individuals during 2‐h interval sampling over six bi‐monthly 24‐h sampling cycles representing 53 species, of which 11 (~20%) were previously unknown in the system. Diel variation indicated that significantly higher numbers of individuals and species were caught at night, whereas diversity and evenness were higher during the day. Species richness was significantly higher in July and January, whereas diversity and evenness peaked around May; both were correlated with temperature. Diel variation in species composition was influenced primarily by the light/dark cycle. Cluster analyses of each diel cycle separated fish assemblages from midday samples from those of nocturnal samples, separated by an extended wide transition period as fish moved at dawn and during the late afternoon/dusk. Significant shifts (as determined by MANOVA) in assemblage structure occurred between months. Canonical correspondence analysis showed that temperature and day/night effects were the most important environmental variables structuring the fish community. This constrained ordination also defined species with specific habitat preferences as follows: (i) diurnal, warm temperature species (mainly planktivores) (Brevoortia gunteri, Cetengraulis edentulus, Diapterus auratus, and Membras martinica); (ii) nocturnal, warm temperature species (mainly predators) (Citharichthys spilopterus, Cathorops melanopus, and Bairdiella spp.); and (iii) low temperature, diurnal species (Brevoortia patronus and Mugil curema) or those with twilight and nocturnal distributions (Anchoa mitchilli, the most numerically abundant species). Our results indicate that diel and seasonal changes in fish community structure were mainly related to day/night cycles and temperature regimes.  相似文献   
198.
Siljan, central Sweden, is the largest known impact structure in Europe. It was formed at about 380 Ma, in the late Devonian period. The structure has been heavily eroded to a level originally located underneath the crater floor, and to date, important questions about the original size and morphology of Siljan remain unanswered. Here we present the results of a shock barometry study of quartz‐bearing surface and drill core samples combined with numerical modeling using iSALE. The investigated 13 bedrock granitoid samples show that the recorded shock pressure decreases with increasing depth from 15 to 20 GPa near the (present) surface, to 10–15 GPa at 600 m depth. A best‐fit model that is consistent with observational constraints relating to the present size of the structure, the location of the downfaulted sediments, and the observed surface and vertical shock barometry profiles is presented. The best‐fit model results in a final crater (rim‐to‐rim) diameter of ~65 km. According to our simulations, the original Siljan impact structure would have been a peak‐ring crater. Siljan was formed in a mixed target of Paleozoic sedimentary rocks overlaying crystalline basement. Our modeling suggests that, at the time of impact, the sedimentary sequence was approximately 3 km thick. Since then, there has been around 4 km of erosion of the structure.  相似文献   
199.
The Water Framework Directive (WFD) 2000/60/EC, adopted by the European Community in 2000 with the goal of maintaining and improving the aquatic environments, requires that member states achieve and maintain a good ecological status of all water bodies by 2015. In the marine context, the ecological status has to be quantified applying indexes based on appropriate key biological elements, which allow the categorization of water bodies into five Ecological Status (ES) classes. The CARLIT index is a cartographic monitoring tool enabling the Ecological Quality Ratio (EQR) to be calculated using macroalgae in coastal hard bottoms as a key biological element; at present it is being applied in Spain, France and Italy. To detect actual changes of water quality and, consequently, rely on the application of indexes for the assessment of the ecological status in the marine environment, it is necessary to evaluate their sensitivity to natural variability at different temporal and spatial scales. In this study we present a first quantification of natural (spatial and temporal) variability of EQR‐CARLIT quality assessment in 2006 and 2007 along the Ligurian coast (North‐Western Mediterranean, Italy). The EQR‐CARLIT values recorded along the Ligurian coastline show that natural variability of EQR‐CARLIT is low and that it does not affect the attribution of a given stretch of coast to a particular ES class, in agreement with the major human pressures acting in the area (urbanization, river load, sea‐farming). A small‐scale variability was detected, strengthening the use of cartography of the whole rocky shore, whenever possible, or, alternatively, the assessment of the ecological status for long stretches of coast, to encompass the small‐scale variability due to local factors.  相似文献   
200.
Growth strata are used to determine the kinematics of synsedimentary structures such as faults. Classical methods of analysis such as thickness versus throw plot consider that the available space created by fault slip in the hanging wall of faults is instantaneously filled up by sediments. This has lead many previous works to identify a cyclic activity for growth faults. Here we perform a careful analysis of the variation of strata thicknesses on each side of a very well documented normal growth fault in the Niger delta. We show that these thickness variations are induced by the alternation of sedimentary processes during continuous fault slip. Suspended-load processes induce either uniform or slightly variable thickness of a large majority of mudstone layers. Bedload processes result in a preferential thickening of sand layers in the hanging wall. These high quality data thus provide strong grounds for doubting the polycyclic growth diagnosed for some faults at the scale of sedimentary cycles and supports the notion that fault displacement rates can be very well behaved. Our study emphasizes the important conclusion that stable fault growth, and related displacement rates, can appear to be punctuated when viewed at the scale of sedimentary cycles. It follows that care should be taken when attempting to derive displacement rates on temporal scales equivalent to those of alternating sedimentological cycles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号