首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   90篇
  免费   3篇
  国内免费   3篇
测绘学   15篇
大气科学   10篇
地球物理   31篇
地质学   36篇
海洋学   1篇
天文学   1篇
自然地理   2篇
  2023年   1篇
  2022年   2篇
  2021年   4篇
  2020年   6篇
  2019年   5篇
  2018年   12篇
  2017年   8篇
  2016年   13篇
  2015年   3篇
  2014年   10篇
  2013年   8篇
  2012年   5篇
  2011年   3篇
  2010年   4篇
  2009年   1篇
  2006年   3篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
  1990年   1篇
排序方式: 共有96条查询结果,搜索用时 15 毫秒
21.
Hybrid simulation combines numerical and experimental methods for cost‐effective, large‐scale testing of structures under simulated dynamic earthquake loads. Particularly for experimental seismic collapse simulation of structures, hybrid testing can be an attractive alternative to earthquake simulators due to the limited capacity of most facilities and the difficulties and risks associated with a collapsing structure on a shaking table. The benefits of hybrid simulation through collapse can be further enhanced through accurate and practical substructuring techniques that do not require testing the entire structure. An innovative substructuring technique for hybrid simulation of structures subjected to large deformations is proposed to simplify the boundary conditions by overlapping the domains between the numerical and experimental subassemblies. The advantages of this substructuring technique are the following: it requires only critical components of the structure to be tested experimentally; it reduces the number of actuators at the interface of the experimental subassemblies; and it can be implemented using typically available equipment in laboratories. Compared with previous overlapping methods that have been applied in hybrid simulation, this approach requires additional sensing in the hybrid simulation feedback loop to obtain internal member forces, but provides significantly better accuracy in the highly nonlinear range. The proposed substructuring technique is verified numerically and validated experimentally, using the response of a four‐story moment‐resisting frame that was previously tested to collapse on an earthquake simulator. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
22.
In this paper, remote sensing and GIS have been used to assess the status of NO2 at the south west of Iran. 221 data about concentration of NO2 was extracted from Ozone Monitoring Instrument. Ordinary kriging and inverse distance weighting interpolation methods was used to interpolate data. Results showed that ordinary kriging method using cross-validation have had less error. North east of the study area has the highest concentration of NO2 (329 molecule/cm2) and the concentration of NO2 decreases from north east to South west of the study area. On the other hand, data trend results showed that the data seems to exhibit a fairly strong trend in the east west direction and a weaker one in the north–south direction.  相似文献   
23.
24.
In this article we define inverse line graphs of directed graphs as a new framework for solving some classical network analysis problems. The extraction method and theories of inverse line graphs are explained in this article. It is shown that by changing the analysis space from the original directed graph to the inverse line graph, complex problems can be changed into simpler problems. We show the usefulness of the proposed framework in two particular applications: shortest path computations and the more general route planning. Considering the implementation result, we expect that this framework could be used in many more network analysis problems.  相似文献   
25.
Ocean Dynamics - Properties of the flow generated by a buoyancy source are investigated by a number of laboratory experiments. Experiments are carried out in a tank with a Cape to simulate the...  相似文献   
26.
Natural Hazards - Organization of volunteer personnel and proper management of these enormous and valuable human resources to make that most of their scientific, experiential, physical, and...  相似文献   
27.
Soil temperature has an important role in agricultural, hydrological, meteorological and climatological studies. In the present research, monthly mean soil temperature at four different depths (5, 10, 50 and 100 cm) was estimated using artificial neural networks (ANN), adaptive neuro-fuzzy inference system (ANFIS) and gene expression programming (GEP). The monthly mean soil temperature data of 31 stations over Iran were employed. In this process, the data of 21 and 10 stations were used for training and testing stages of used models, respectively. Furthermore, the geographical information including latitude, longitude and altitude as well as periodicity component (the number of months) was considered as inputs in the mentioned intelligent models. The results demonstrated that the ANN and ANFIS models had good performance in comparison with the GEP model. Nevertheless, the ANFIS generally performed better than ANN model.  相似文献   
28.
In this study, scouring around piers perpendicular to flow (PPF) and piers toward the flow (PTF) under clear-water condition was examined by placing a set of triad cylindrical piers with a 5-cm diameter and a 15-cm center to center distance at the positions of 60, 90, and 120° of the bend at a constant flow rate of 70 l per second. Natural sand of uniform grain size and average diameter of 1 mm with a uniformity coefficient of 1.3 was used as bed material of the flume. According to the results of this study, the maximum scouring depth occurred in the PPF test situated at the position of 90° of the bend. In such a position, the maximum depth of scouring hole was equal to 1.1 times the depth of the flow at the beginning of the bend. Also, where the piers were positioned in PTF and PPF modes in a 60° angle, the maximum area of scouring hole was observed around piers and sediment piles at the downstream side of the piers. The maximum height of sedimentation occurred in the PPF test situated at the 90° position of the bend. Such a stack was as high as 0.7 times the flow depth at the beginning of the bend and was observed at the 156° position of the bend, at a 20% distance of the flume width from the inner bank. Further results as well as discussion and analysis are among other points presented in the article.  相似文献   
29.
Theoretical and Applied Climatology - Weather generators (WGs) typically have unique advantages to the climate change impacts assessment. However, each of them has the weaknesses, strengths, and...  相似文献   
30.
Geomechanical changes may occur in reservoirs due to production from reservoirs. Study of these changes has an important role in upcoming operations. Frictional equilibrium is one of the items that should be determined during the depletion as it may vary with respect to time. Pre-existing faults and fractures will slide in regions where there is no frictional equilibrium. Hence, it may be concluded that reduction in pore pressure can initiate the sliding of faults. Whereas, it is also possible that faults will not exist after a certain time as production recovers the equilibrium. Casing shearing or lost circulation may be occurred due to faulting. In reservoirs which depletion leads to frictional equilibrium, decrease of fractures and faults leads to some variations in permeability. Hence, predicting the effect of depletion on frictional equilibrium is required in dealing with casing shearing or lost circulation in drilling of new wells. In addition, permeability modeling will be more precise during the life of reservoirs. Estimation of necessary time to create or vanish faults is vital to be successful in production from wells or drilling new wells. Achieving or loosing of equilibrium mainly depends on in situ stresses and rate of production. Estimation of the in situ stresses at the initiation state of reservoir is the key to study the state of faults. The next step is to predict the effects of depletion on in situ stresses. Different models are suggested in which decrease of horizontal stresses is predicted as function of pore pressure variation. In these models, different assumptions are made such as simplifying the poroelastic theory, ignoring the passing time, and considering the geometry of reservoir. In this article, a new model is proposed based on theory of inclusions and boundary element method. This state-of-the-art model considers the geometry of reservoir. In addition, changes of in situ are obtained as a function of time to reach to a more precise model capable of applying during the reservoir life. Finally, the model is imposed on real cases. The effect of depletion on faults is studied in reservoirs of normal and strike-slip stress regimes, and conventional and proposed models are compared. For this aim, in the first step, mechanical earth models of these two reservoirs are built using logging and coring data. Stress polygon method and poroelastic horizontal strain model are used for strike-slip and normal regimes, respectively. In reservoir 1 which is in a strike-slip stress regime, a fault is distinguished in formation microimaging (FMI) log. For this reservoir, the required time to achieve to frictional equilibrium is calculated. In the reservoir 2, the potential depth of fault sliding is analyzed and required time for faulting in that depth is predicted. The predicted time for satisfaction of frictional equilibrium using the proposed model has a significant difference with the predicted time using the previous methods. In addition, the proposed model predicts that different parts of reservoir 2 are willing for faulting during depletion. The previous model determines only one point that faulting may happen. It is necessary to use this new model to consider different important factors such as geometry and time to gain more accurate predictions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号