首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   288篇
  免费   10篇
  国内免费   3篇
测绘学   9篇
大气科学   10篇
地球物理   55篇
地质学   117篇
海洋学   26篇
天文学   20篇
综合类   4篇
自然地理   60篇
  2021年   3篇
  2020年   4篇
  2019年   5篇
  2018年   4篇
  2017年   10篇
  2016年   7篇
  2015年   3篇
  2014年   13篇
  2013年   26篇
  2012年   9篇
  2011年   15篇
  2010年   15篇
  2009年   18篇
  2008年   13篇
  2007年   17篇
  2006年   15篇
  2005年   4篇
  2004年   13篇
  2003年   11篇
  2002年   4篇
  2001年   8篇
  2000年   2篇
  1999年   8篇
  1998年   7篇
  1997年   4篇
  1996年   2篇
  1995年   6篇
  1994年   2篇
  1992年   2篇
  1991年   2篇
  1990年   3篇
  1987年   6篇
  1986年   2篇
  1985年   3篇
  1984年   4篇
  1983年   3篇
  1982年   4篇
  1981年   3篇
  1980年   2篇
  1979年   2篇
  1977年   1篇
  1975年   2篇
  1973年   1篇
  1972年   2篇
  1971年   1篇
  1970年   1篇
  1969年   1篇
  1968年   1篇
  1967年   2篇
  1966年   1篇
排序方式: 共有301条查询结果,搜索用时 15 毫秒
211.
This article studies Bayesian hierarchical spatial modelling that monitors the changes of residual spatial pattern (structure) of the outcome variable for exploring unknown risk factors in small‐area analysis. Spatially structured random effects (SRE) and unstructured random effects (URE) terms added to the conventional logistic regression model take into account overdispersion and residual spatial structure, which if unaccounted for could cause incorrect identification of risk factors. Mapping and/or calculating the ratio of random effects that are spatially‐structured monitor the extent of residual spatial structure. The monitoring provides insights into identification of unknown covariates that have similar spatial structures to those of SRE. Adding such covariates to the model has the potential to diminish the residual spatial structure, until possibly all or most of the spatial structure can be explained. Risk factors identified are the added covariates that have statistically significant regression coefficients. We apply the methods to the analysis of domestic burglaries in Cambridgeshire, England. Small‐area analysis of crime where data often display apparent spatial structure would particularly benefit from the methodologies. We discuss the methodologies, their relevancy in our analysis of domestic burglaries, their limitations, and possible paths for future research.  相似文献   
212.
Metasomatic oxidation of upper mantle periodotite   总被引:1,自引:0,他引:1  
Examination of Fe3+ in metasomatized spinel peridotite xenoliths reveals new information about metasomatic redox processes. Composite xenoliths from Dish Hill, California possess remnants of magmatic dikes which were the sources of the silicate fluids responsible for metasomatism of the peridotite part of the same xenoliths. Mössbauer spectra of mineral separates taken at several distances from the dike remnants provide data on Fe3+ contents of minerals in the metasomatized peridotite. Clinopyroxenes contain 33% of total iron (FeT) as Fe3+ (Fe3+/FeT=0.33); orthopyroxenes contain 0.06–0.09 Fe3+/FeT; spinels contain 0.30–0.40 Fe3+/FeT; olivines contain 0.01–0.06 Fe3+/FeT; and metasomatic amphibole in the peridotite contains 0.85–0.90 Fe3+/FeT. In each mineral, Fe3+ and Fe2+ cations per formula unit (p.f.u.) decrease with distance from the dike, but the Fe3+/FeT ratios of each mineral do not vary. Clinopyroxene, spinel, and olivine Fe3+/FeT ratios are significantly higher than in unmetasomatized spinel peridotites. Metasomatic changes in Fe3+/FeT ratios in each mineral are controlled by the oxygen fugacity of the system, but the mechanism by which each phase accommodates this ratio is affected by crystal chemistry, kinetics, rock mode, fluid composition, fluid/rock ratio, and fluid-mineral partition coefficients. Ratio increases in pyroxene and spinel occur by exchange reactions involving diffusion of Fe3+ into existing mineral grains rather than by oxidation of existing Fe2+ in peridotite mineral grains. The very high Fe3+/FeT ratio in the metasomatic amphibole may be a function of the high Fe3+/FeT of the metasomatic fluid, crystal chemical limitations on the amount of Fe3+ that could be accommodated by the pyroxene, spinel, and olivine of the peridotite, and the ability of the amphibole structure to accommodate large amounts of 3 + valence cations. In the samples studied, metasomatic amphibole accounts for half of the bulk-rock Fe2O3. This suggests that patent metasomatism may produce a greater change in the redox state of mantle peridotite than cryptic metasomatism. Comparison of the metasomatized samples with unmetasomatized peridotites reveals that both Fe2+ and Fe3+ cations p.f.u. were increased during metasomatism and 50% or more of iron added was Fe3+. With increasing distance from the dike, the ratio of added Fe3+ to added Fe2+ increases. The high Fe3+/FeT of amphibole and phlogopite in the dikes and in the peridotite, and the high ratios of added Fe3+/added Fe2+ in pyroxenes and spinel suggest that the Fe3+/FeT ratio of the metasomatic silicate fluid was high. As the fluid perolated through and reacted with the peridotite, Fe3+ and C–O–H volatile species were concentrated in the fluid, increasing the fluid Fe3+/FeT.  相似文献   
213.
Digital elevation models (DEMs) vary in resolution and accuracy by the production method. DEMs with different resolutions and accuracies can generate varied topographic and hydrological features, which can in turn affect predictions by soil erosion models, such as the WEPP (Water Erosion Prediction Project) model. This study investigates the effects of DEMs on deriving topographic and hydrological attributes, and on predicting watershed erosion using WEPP v2006.5. Six DEMs at three resolutions from three sources were prepared for two small forested watersheds located in northern Idaho, USA. These DEMs were used to calculate topographic and hydrological parameters that served as inputs to WEPP. The model results of sediment yields and runoffs were compared with field observations. For both watersheds, DEMs with different resolutions and sources generated varied watershed shapes and structures, which in turn led to different extracted hill slope and channel lengths and gradients, and produced substantially different erosion predictions by WEPP.  相似文献   
214.
Seasonal responses in estuarine metabolism (primary production, respiration, and net metabolism) were examined using two complementary approaches. Total ecosystem metabolism rates were calculated from dissolved oxygen time series using Odum’s open water method. Water column rates were calculated from oxygen-based bottle experiments. The study was conducted over a spring-summer season in the Pensacola Bay estuary at a shallow seagrass-dominated site and a deeper bare-bottomed site. Water column integrated gross production rates more than doubled (58.7 to 130.9 mmol O2 m?2 day?1) from spring to summer, coinciding with a sharp increase in water column chlorophyll-a, and a decrease in surface salinity. As expected, ecosystem gross production rates were consistently higher than water column rates but showed a different spring-summer pattern, decreasing at the shoal site from 197 to 168 mmol O2 m?2 day?1 and sharply increasing at the channel site from 93.4 to 197.4 mmol O2 m?2 day?1. The consistency among approaches was evaluated by calculating residual metabolism rates (ecosystem ? water column). At the shoal site, residual gross production rates decreased from spring to summer from 176.8 to 99.1 mmol O2 m?2 day?1 but were generally consistent with expectations for seagrass environments, indicating that the open water method captured both water column and benthic processes. However, at the channel site, where benthic production was strongly light-limited, residual gross production varied from 15.7 mmol O2 m?2 day?1 in spring to 86.7 mmol O2 m?2 day?1 in summer. The summer rates were much higher than could be realistically attributed to benthic processes and likely reflected a violation of the open water method due to water column stratification. While the use of sensors for estimating complex ecosystem processes holds promise for coastal monitoring programs, careful attention to the sampling design, and to the underlying assumptions of the methods, is critical for correctly interpreting the results. This study demonstrated how using a combination of approaches yielded a fuller understanding of the ecosystem response to hydrologic and seasonal variability.  相似文献   
215.
Central Iberian Variscan granite batholiths and anatectic complexes are punctuated by coeval stocks of hydrous, high-K calc-alkaline, ultrabasic to intermediate rock series. Despite their overall calc-alkaline affinity, the mafic–ultramafic members contain high-Ti amphibole oikocrysts rimmed by lower-Ti amphibole ± cummingtonite and high-Ti amphibole replacing early phlogopite. To understand the factors controlling the saturation of high-Ti amphibole in the parental magmas, clinopyroxene-melt, phlogopite-melt and amphibole-melt relationships are reviewed. This analysis reveals that for melts with intermediate compositions, the affinity of TiO2 for amphibole rises in alkalic magmas. Accordingly, mildly alkalic trachytoid to subalkaline medium- to high-K andesite and dacite compositions are estimated for interstitial high-Ti amphibole-saturated melts. Amphibole Ce/Pb ratios reveal a mantle–crust hybrid nature for interstitial melts with subalkaline trachytoid compositions. The hydrous character of the Variscan basic magmas favoured an overall magmatic evolutionary trend with a low rate of variation of Na2O with respect to silica during amphibole crystallization. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
216.
Onondaga Lake is a moderately saline, eutrophic lake characterized by waters rich in calcium, sodium, chloride and bicarbonate. Large quantities of CaCO3 that are precipitated in the lake result from excess calcium supplied as calcium chloride wastes produced by soda-ash manufacturing to lake waters that are at or near saturation with respect to CaCO3 from solution of carbonate rocks in the drainage basin. Beaches along the leeward (northeastern) shore of the lake are composed almost entirely of oncolites ranging from a few millimeters to several centimeters in maximum dimension. Offshore, in 1–2 m of water, the oncolites are biscuit-shaped concretions as much as 15 cm in diameter. The oncolites consist mainly of low-magnesium calcite, but dissolution of the carbonate with dilute acid results in a mass of blue-green algal filaments of the same approximate size and shape as the original oncolite. Most oncolites have an obvious nucleus; the most common nucleus is the hollow stem and cortication tubules of charophytes. Charophytes do not occur in Onondaga Lake today although they are common in other limestone-bedrock lakes in central New York State. Charophytes probably were eliminated by the marked increases in salinity of the lake that resulted from the introduction of soda-ash manufacturing on the lake shores around 1880 which means that growth of the oncolites began at least 100 years ago.  相似文献   
217.
A pumping test in a granite aquifer provides information about the interaction between the upper weathered zone and lower fractured zone. A radial flow numerical model is used to interpret the test and estimate aquifer parameters. This model successfully reproduces both the fractured zone response and the shallow weathered zone response which is characterised by increasing drawdown even after abstraction ceases. When the deep fractured aquifer was exploited, a serious decline in groundwater heads and yields occurred; this behaviour can be reproduced by the model. The model is then used to investigate the effective long-term exploitation of the aquifer and the results indicate that dug-cum-bore wells can be used for the safe and efficient exploitation of the aquifer resources.  相似文献   
218.
219.
The Athabasca Glacier, resting on a rigid bed, provides an excellent example of subglacial ice and till erosion. The presence of a thin mobile till layer is shown by the presence of flutes, saturated till layer, push moraines and ploughed boulders. Cross‐cutting striations, v‐shaped striations and reversed stoss‐and‐lee clasts are indicative of clasts rotating within this layer. As the till moves it erodes the bedrock and clasts within it. A combination of erosion by ice and till produces stoss‐and‐lee‐clasts and generates striations on flutes and embedded clasts, as well as eroding the bedrock into a continuum of smoothed, rounded and streamlined forms. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
220.
Measurements of primary production and respiration provide fundamental information about the trophic status of aquatic ecosystems, yet such measurements are logistically difficult and expensive to sustain as part of long-term monitoring programs. However, ecosystem metabolism parameters can be inferred from high frequency water quality data collections using autonomous logging instruments. For this study, we analyzed such time series datasets from three Gulf of Mexico estuaries: Grand Bay, MS; Weeks Bay, AL; and Apalachicola Bay, FL. Data were acquired from NOAA's National Estuarine Research Reserve System Wide Monitoring Program and used to calculate gross primary production (GPP), ecosystem respiration (ER), and net ecosystem metabolism (NEM) using Odum's open water method. The three systems represent a diversity of estuaries typical of the Gulf of Mexico region, varying by as much as two orders of magnitude in key physical characteristics, such as estuarine area, watershed area, freshwater flow, and nutrient loading. In all three systems, GPP and ER displayed strong seasonality, peaking in summer and being lowest during winter. Peak rates of GPP and ER exceeded 200 mmol O2?m?2 day?1 in all three estuaries. To our knowledge, this is the first study examining long-term trends in rates of GPP, ER, and NEM in estuaries. Variability in metabolism tended to be small among sites within each estuary. Nitrogen loading was highest in Weeks Bay, almost two times greater than that in Apalachicola Bay and 35 times greater than to Grand Bay. These differences in nitrogen loading were reflected in average annual GPP rates, which ranged from 825 g C m?2 year?1 in Weeks Bay to 401 g C m?2 year?1 for Apalachicola Bay and 377 g C m?2 year?1 in Grand Bay. Despite the strong inter-annual patterns in freshwater flow and salinity, variability in metabolic rates was low, perhaps reflecting shifts in the relative importance of benthic and phytoplankton productivity, during different flow regimes. The advantage of the open water method is that it uses readily available and cost-effective sonde monitoring technology to estimate these fundamental estuarine processes, thus providing a potential means for examining long-term trends in net carbon balance. It also provides a historical benchmark for comparison to ongoing and future monitoring focused on documenting the effect of human activities on the coastal zone.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号