首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1950篇
  免费   100篇
  国内免费   23篇
测绘学   85篇
大气科学   152篇
地球物理   706篇
地质学   684篇
海洋学   153篇
天文学   145篇
综合类   10篇
自然地理   138篇
  2022年   12篇
  2021年   23篇
  2020年   50篇
  2019年   35篇
  2018年   60篇
  2017年   51篇
  2016年   80篇
  2015年   71篇
  2014年   69篇
  2013年   115篇
  2012年   90篇
  2011年   118篇
  2010年   101篇
  2009年   122篇
  2008年   100篇
  2007年   71篇
  2006年   67篇
  2005年   45篇
  2004年   42篇
  2003年   51篇
  2002年   31篇
  2001年   51篇
  2000年   31篇
  1999年   36篇
  1998年   31篇
  1997年   30篇
  1996年   24篇
  1995年   22篇
  1994年   20篇
  1993年   12篇
  1992年   18篇
  1990年   18篇
  1989年   17篇
  1988年   19篇
  1987年   12篇
  1986年   21篇
  1985年   23篇
  1984年   18篇
  1983年   26篇
  1982年   21篇
  1981年   18篇
  1980年   15篇
  1979年   18篇
  1978年   13篇
  1977年   14篇
  1976年   13篇
  1975年   17篇
  1973年   14篇
  1972年   10篇
  1969年   9篇
排序方式: 共有2073条查询结果,搜索用时 78 毫秒
181.
182.
以位于三峡库区的龙门河森林自然保护区为研究区,综合利用线性光谱混合模型和几何光学模型,基于高光谱遥感数据提取森林结构参数是本文研究的重点。在研究区地面调查数据的基础上,通过高光谱数据和混合光谱分解法,获得反演几何光学模型所需的四分量参数,根据背景光照分量与森林植被冠层各参数间的关系,反演得到森林冠层郁闭度及平均冠幅的定量分布图,并利用37个野外实测样本进行结果验证。  相似文献   
183.
Using observations covering the last 128 years we show that apparent changes in El Niño-Southern Oscillation (ENSO) teleconnections can be explained by chance and stem from sampling variability. This result is backed by experiments in which an atmosphere model is driven by 123 years of observed sea surface temperature. The possibility of ENSO teleconnection changes in a warming climate is further investigated using coupled GCMs driven by past and projected future greenhouse gas concentrations. These runs do not exclude physical changes in the teleconnection strength but do not agree on their magnitude and location. If existing at all, changes in the strength of ENSO teleconnection, other than obtained by chance, are small and will only be detectable on centennial time scales.  相似文献   
184.
The International Association of Geodesy officially established the International GPS Service (IGS) on Janaury 1, 1994. Its prime objective is to provide support and a rerefence system for a wide variety of scientific and practical applications involving GPS. To fulfill its role the IGS also generates, in addition to its fundamental products (orbital/staion positions and consistent Earth orientation parameters), additional reference-system products providing the necessary infrastructure, standards, and means of calibrations for timing and various atmospheric applications of GPS. The generation and efficient application of IGS products and their impact on a number of positioning and atmospheric applications, including low earth orbit satellites, is reviewed and discussed. @ 1998 John Wiley & Sons, Inc.  相似文献   
185.
Geologists may want to classify compositional data and express the classification as a map. Regionalized classification is a tool that can be used for this purpose, but it incorporates discriminant analysis, which requires the computation and inversion of a covariance matrix. Covariance matrices of compositional data always will be singular (noninvertible) because of the unit-sum constraint. Fortunately, discriminant analyses can be calculated using a pseudo-inverse of the singular covariance matrix; this is done automatically by some statistical packages such as SAS. Granulometric data from the Darss Sill region of the Baltic Sea is used to explore how the pseudo-inversion procedure influences discriminant analysis results, comparing the algorithm used by SAS to the more conventional Moore–Penrose algorithm. Logratio transforms have been recommended to overcome problems associated with analysis of compositional data, including singularity. A regionalized classification of the Darss Sill data after logratio transformation is different only slightly from one based on raw granulometric data, suggesting that closure problems do not influence severely regionalized classification of compositional data.  相似文献   
186.
187.
The creation of the huge fans observed in the western Barents Sea margin can only be explained by assuming extremely high glacial erosion rates in the Barents Sea area. Glacial processes capable of producing such high erosion rates have been proposed, but require the largest part of the preglacial Barents Sea to be subaerial. To investigate the validity of these proposals we have attempted to reconstruct the western preglacial Barents Sea. Our approach was to combine erosion maps based on prepublished data into a single mean valued erosion map covering the whole western Barents Sea and consequently use it together with a simple Airy isostatic model to obtain a first rough estimate of the preglacial topography and bathymetry of the western Barents Sea margin. The mean valued erosion map presented herein is in good volumetric agreement with the sediments deposited in the western Barents Sea margin areas, and as a direct consequence of the averaging procedures employed in its construction we can safely assume that it is the most reliable erosion map based on the available information. By comparing the preglacial sequences with the glacial sequences in the fans we have concluded that 1/2 to 2/3 of the total Cenozoic erosion was glacial in origin and therefore a rough reconstruction of the preglacial relief of the western Barents Sea could be obtained. The results show a subaerial preglacial Barents Sea. Thus, during interglacials and interstadials the area may have been partly glaciated and intensively eroded up to 1 mm/y, while during relatively brief periods of peak glaciation with grounded ice extending to the shelf edge, sediments have been evacuated and deposited at the margins at high rates. The interplay between erosion and uplift represents a typical chicken and egg problem; initial uplift is followed by intensive glacial erosion, compensated by isostatic uplift, which in turn leads to the maintenance of an elevated, and glaciated, terrain. The information we have on the initial tectonic uplift suggests that the most likely mechanism to cause an uplift of the dimensions and magnitude of the one observed in the Barents Sea is a thermal mechanism.  相似文献   
188.
To understand more fully the mode of preservation of organic matter in marine sediments, laboratory sulfurisation of intact cells of the cultured microalga Nannochloropsis salina was performed using inorganic polysulfides in seawater at 50°C. Solvent extractable and non-extractable materials were analysed by GC–MS and Py–GC–MS, respectively, to study the incorporation of sulfur into the microalgal organic matter. No GC-amenable sulfur-containing compounds were found in the extracts apart from some minor thiophenes with a phytanyl carbon skeleton. The residue after extraction and hydrolysis contained abundant macromolecular sulfur-containing moieties as revealed by the presence of dominant C28–C32 thiols, thiophenes, thianes and thiolanes in the flash pyrolysates. These products are thought to be formed from moieties derived from sulfurisation of C28–C32 diols and alkenols, characteristic lipids of N. salina. C1–C2 alkylated thiophenes were also found in the pyrolysates and probably result from moieties formed upon sulfurisation of carbohydrates. The highly resistant biomacromolecule (algaenan) synthesised by N. salina remains unaffected by sulfurisation. The non-hydrolysable residue isolated from the sulfurised N. salina thus comprises algaenan and (poly)sulfide-bound long alkyl chains. The sulfurisation experiments show that both selective preservation of algaenans and lipid and carbohydrate “vulcanisation” can be involved in the preservation of algal organic matter in marine environments.  相似文献   
189.
190.
Cretaceous subduction complexes surround the southeastern margin of Sundaland in Indonesia. They are widely exposed in several localities, such as Bantimala (South Sulawesi), Karangsambung (Central Java) and Meratus (South Kalimantan).
The Meratus Complex of South Kalimantan consists mainly of mélange, chert, siliceous shale, limestone, basalt, ultramafic rocks and schists. The complex is uncomformably covered with Late Cretaceous sedimentary-volcanic formations, such as the Pitap and Haruyan Formations.
Well-preserved radiolarians were extracted from 14 samples of siliceous sedimentary rocks, and K–Ar age dating was performed on muscovite from 6 samples of schist of the Meratus Complex. The radiolarian assemblage from the chert of the complex is assigned to the early Middle Jurassic to early Late Cretaceous. The K–Ar age data from schist range from 110 Ma to 180 Ma. Three samples from the Pitap Formation, which unconformably covers the Meratus Complex, yield Cretaceous radiolarians of Cenomanian or older.
These chronological data as well as field observation and petrology yield the following constraints on the tectonic setting of the Meratus Complex.
(1) The mélange of the Meratus Complex was caused by the subduction of an oceanic plate covered by radiolarian chert ranging in age from early Middle Jurassic to late Early Cretaceous.
(2) The Haruyan Schist of 110–119 Ma was affected by metamorphism of a high pressure–low temperature type caused by oceanic plate subduction. Some of the protoliths were high alluminous continental cover or margin sediments. Intermediate pressure type metamorphic rocks of 165 and 180 Ma were discovered for the first time along the northern margin of the Haruyan Schist.
(3) The Haruyan Formation, a product of submarine volcanism in an immature island arc setting, is locally contemporaneous with the formation of the mélange of the Meratus Complex.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号