首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5389篇
  免费   187篇
  国内免费   48篇
测绘学   132篇
大气科学   418篇
地球物理   1341篇
地质学   1790篇
海洋学   512篇
天文学   858篇
综合类   18篇
自然地理   555篇
  2022年   28篇
  2021年   73篇
  2020年   70篇
  2019年   80篇
  2018年   101篇
  2017年   93篇
  2016年   148篇
  2015年   142篇
  2014年   142篇
  2013年   268篇
  2012年   171篇
  2011年   257篇
  2010年   189篇
  2009年   278篇
  2008年   227篇
  2007年   222篇
  2006年   219篇
  2005年   184篇
  2004年   174篇
  2003年   162篇
  2002年   172篇
  2001年   93篇
  2000年   111篇
  1999年   93篇
  1998年   96篇
  1997年   70篇
  1996年   75篇
  1995年   92篇
  1994年   87篇
  1993年   63篇
  1992年   69篇
  1991年   56篇
  1990年   72篇
  1989年   63篇
  1988年   62篇
  1987年   69篇
  1986年   62篇
  1985年   76篇
  1984年   96篇
  1983年   76篇
  1982年   75篇
  1981年   63篇
  1980年   74篇
  1979年   56篇
  1978年   59篇
  1977年   44篇
  1976年   56篇
  1975年   58篇
  1974年   40篇
  1973年   54篇
排序方式: 共有5624条查询结果,搜索用时 15 毫秒
71.
The 2006 western Java tsunami deposited a discontinuous sheet of sand up to 20 cm thick, flooded coastal southern Java to a depth of at least 8 m and inundated up to 1 km inland. In most places the primarily heavy mineral sand sheet is normally graded, and in some it contains complex internal stratigraphy. Structures within the sand sheet probably record the passage of up to two individual waves, a point noted in eyewitness accounts. We studied the 2006 tsunami deposits in detail along a flow parallel transect about 750 m long, 15 km east of Cilacap. The tsunami deposit first becomes discernable from the underlying sediment 70 m from the shoreline. From 75 to 300 m inland the deposit has been laid down in rice paddies, and maintains a thickness of 10–20 cm. Landward of 300 m the deposit thins dramatically, reaching 1 mm by 450 m inland. From 450 m to the edge of deposition (around 700 m inland) the deposit remains <1 mm thick. Deposition generally attended inundation—along the transect, the tsunami deposited sand to within about 40 m of the inundation limit. The thicker part of the deposit contains primarily sand indistinguishable from that found on the beach 3 weeks after the event, but after about 450 m (and roughly coinciding with the decrease in thickness) the tsunami sediment shifts to become more like the underlying paddy soil than the beach sand. Grain sizes within the deposit tend to fine upward and landward, although overall upward fining takes place in two discrete pulses, with an initial section of inverse grading followed by a section of normal grading. The two inversely graded sections are also density graded, with denser grains at the base, and less dense grains at the top. The two normally graded sections show no trends in density. The inversely graded sections show high density sediment to the base and become less dense upward and represents traction carpet flows at the base of the tsunami. These are suggestive of high shear rates in the flow. Because of the grain sorting in the traction carpet, the landward-fining trends usually seen in tsunami deposits are masked, although lateral changes of mean sediment grain size along the transect do show overall landward fining, with more variation as the deposit tapers off. The deposit is also thicker in the more seaward portions than would be produced by tsunamis lacking traction carpets.  相似文献   
72.
The effect of sulfur dissolved as sulfide (S2−) in silicate melts on the activity coefficients of NiO and some other oxides of divalent cations (Ca, Cr, Mn, Fe and Co) has been determined from olivine/melt partitioning experiments at 1400 °C in six melt compositions in the system CaO-MgO-Al2O3-SiO2 (CMAS), and in derivatives of these compositions at 1370 °C, obtained from the six CMAS compositions by substituting Fe for Mg (FeCMAS). Amounts of S2− were varied from zero to sulfide saturation, reaching 4100 μg g−1 S in the most sulfur-rich silicate melt. The sulfide solubilities compare reasonably well with those predicted from the parameterization of the sulfide capacity of silicate melts at 1400 °C of O’Neill and Mavrogenes (2002), although in detail systematic deviations indicate that a more sophisticated model may improve the prediction of sulfide capacities.The results show a barely discernible effect of S2− in the silicate melt on Fe, Co and Ni partition coefficients, and also surprisingly, a tiny but resolvable effect on Ca partitioning, but no detectable effect on Cr, Mn or some other lithophile incompatible elements (Sc, Ti, V, Y, Zr and Hf). Decreasing Mg# of olivine (reflecting increasing FeO in the system) has a significant influence on the partitioning of several of the divalent cations, particularly Ca and Ni. We find a remarkably systematic correlation between and the ionic radius of M2+, where M = Ca, Cr, Mn, Fe, Co or Ni, which is attributable to a simple relationship between size mismatch and excess free energies of mixing in Mg-rich olivine solid solutions.Neither the effect of S2− nor of Mg#ol is large enough by an order of magnitude to account for the reported variations of obtained from electron microprobe analyses of olivine/glass pairs from mid-ocean ridge basalts (MORBs). Comparing these MORB glass analyses with the Ni-MgO systematics of MORB from other studies in the literature, which were obtained using a variety of analytical techniques, shows that these electron microprobe analyses are anomalous. We suggest that the reported variation of with S content in MORB is an analytical artifact.Mass balance of melt and olivine compositions with the starting compositions shows that dissolved S2− depresses the olivine liquidus of haplobasaltic silicate melts by 5.8 × 10−3 (±1.3 × 10−3) K per μg g−1 of S2−, which is negligible in most contexts. We also present data for the partitioning of some incompatible trace elements (Sc, Ti, Y, Zr and Hf) between olivine and melt. The data for Sc and Y confirm previous results showing that and decrease with increasing SiO2 content of the melt. Values of average 0.01 with most falling in the range 0.005-0.015. Zr and Hf are considerably more incompatible than Ti in olivine, with and about 10−3. The ratio / is well constrained at 0.611 ± 0.016.  相似文献   
73.
As the impacts from anthropogenic climate change are increasing globally, people are experiencing dramatic shifts in weather, temperature, wildlife and vegetation patterns, and water and food quality and availability. These changes impact human health and well-being, and resultantly, climate change has been identified as the biggest global health threat of the 21st Century. Recently, research is beginning to indicate that changes in climate, and the subsequent disruption to the social, economic, and environmental determinants of health, may cause increased incidences and prevalence of mental health issues, emotional responses, and large-scale sociopsychological changes. Through a multi-year, community-led, exploratory case study conducted in Rigolet, Nunatsiavut, Labrador, Canada, this research qualitatively explores the impacts of climate change on mental health and well-being in an Inuit context. Drawing from 67 in-depth interviews conducted between January 2010 and October 2010 with community members and local and regional health professionals, participants reported that changes in weather, snow and ice stability and extent, and wildlife and vegetation patterns attributed to climate change were negatively impacting mental health and well-being due to disruptions in land-based activities and a loss of place-based solace and cultural identity. Participants reported that changes in climate and environment increased family stress, enhanced the possibility of increased drug and alcohol usage, amplified previous traumas and mental health stressors, and were implicated in increased potential for suicide ideation. While a preliminary case study, these exploratory findings indicate that climate change is becoming an additional mental health stressor for resource-dependent communities and provide a baseline for further research.  相似文献   
74.
Abstract— Environmental conditions on Mars are conducive to the modification and erosion of impact craters, potentially revealing the nature of their substructure. On Earth, postimpact erosion of complex craters in a wide range of target rocks has revealed the nature and distribution of craterrelated fault structures and a complex array of breccia and pseudotachylyte dikes, which range up to tens of meters in width and tens of kilometers in length. We review the characteristics of fault structures, breccia dikes, and pseudotachylyte dikes on Earth, showing that they occur in complex network‐like patterns and are often offset along late‐stage crater‐related faults. Individual faults and dikes can undulate in width and can branch and bifurcate along strike. Detailed geological analyses of terrestrial craters show that faults and breccia dikes form during each of the major stages of the impact‐cratering process (compression, excavation, and modification). We report here on the discovery of prominent, lattice‐like ridge networks occurring on the floor of a highly modified impact crater 75 km in diameter near the dichotomy boundary of the northern lowland and southern upland. Interior fill and crater‐floor units have been exhumed by fluvial and eolian processes to reveal a unit below the crater floor containing a distinctive set of linear ridges of broadly similar width and forming a lattice‐like pattern. Ridge exposures range from ?1–4 km in length and ?65–120 m in width, are broadly parallel, straight to slightly curving, and are cross‐cut by near‐orthogonal ridges, forming a box or lattice‐like pattern. Ridges are exposed on the exhumed crater floor, extending from the base of the wall toward the center. On the basis of the strong similarities of these features to terrestrial crater‐related fault structures and breccia dikes, we interpret these ridges to be faults and breccia dikes formed below the floor of the crater during the excavation and modification stages of the impact event, and subsequently exhumed by erosion. The recognition of such features on Mars will help in documenting the nature of impact‐cratering processes and aid in assessment of crustal structure. Faults and breccia dikes can also be used as data for the assessment of post‐cratering depths and degrees of landform exhumation.  相似文献   
75.
The exsolution of volatile phases from silicate magmas controls physical and chemical magma properties and influences large-scale geologic phenomena and processes having major societal and economic implications including the release of climate-altering gases to the atmosphere, the explosivity of volcanic eruptions, hydrothermal alteration, and the generation of magmatic–hydrothermal mineralization. These volatile phases exsolve from a wide variety of magmas and cover a very broad spectrum of compositions.

The transition from the orthomagmatic to the hydrothermal stages has important bearing on these fundamentally important geologic phenomena, and this report summarizes the published results of a dozen scientific investigations on the magmatic–hydrothermal transition as applied to volcanic eruption and magmatic–hydrothermal mineralization. These studies involve a variety of analytical and experimental methodologies, and many focus on fluid and melt inclusions from mineralized magmatic systems. A primary goal of each study is to better understand the role of magmatic volatiles and the importance of the magmatic–hydrothermal transition on these geologic processes.  相似文献   

76.
This study examines the links between 31P solidstate NMR studies of aluminum phosphate minerals and their crystallographic structures. We found that 31P isotropic chemical shift values, iso, carry little information about mineral structures. There seems to be no relation between the chemical shift anisotropy, =3311 (33>22> 11), and indicies of phosphate-tetrahedra distortion. 31P1H heteronuclear magnetic dipole interactions, on the other hand, carry important information about hydrous phosphate mineral structures, information that should prove to be quite valuable in studies of phosphate adsorbed on mineral surfaces. This interaction can be measured through a variety of qualitative and quantitative experiments. It appears that spin diffusion is so rapid that subtle differences in hydrogen-bonding environments cannot be resolved.  相似文献   
77.
The dynamics of granitic landscapes are modulated by bimodal weathering, which produces patchy granular soils and expanses of bare rock ranging from meter-scale boulders to mountain-scale domes. We used terrain analysis and with cosmogenic nuclide measurements of erosion rates to quantitatively explore Wahrhaftig’s decades-old hypothesis for the development of “stepped topography” by differential weathering of bare and soil-mantled granite. According to Wahrhaftig’s hypothesis, bare granite weathers slower than soil-mantled granite; thus random erosional exposure of bare rock leads to an alternating sequence of steep, slowly weathering bedrock “steps” and gently sloped, but rapidly weathering, soil-mantled “treads.” Our investigation focused on the terrain surrounding the Southern Sierra Critical Zone Observatory (CZO), which is underlain by granitic bedrock and lies outside the limits of recent glaciation, in the heart of the stepped topography described by Wahrhaftig. Our digital terrain analysis confirms that steep steps often grade into gentle treads, consistent with Wahrhaftig’s hypothesis. However, we observe a mix-and-match of soil and bare rock on treads and steps, contrary to one of the hypothesis’ major underpinnings – that bare rock should be much more common on steps than on treads. Moreover, the data show that bare rock is not as common as expected at step tops; Wahrhaftig’s hypothesis dictates that step tops should act as slowly eroding base levels for the treads above them. The data indicate that, within each landscape class (i.e., the steps and treads), bare rock erodes more slowly than surrounding soil. This suggests that the coupling between soil production and denudation in granitic landscapes harbors a tipping point wherein erosion rates decrease when soils are stripped to bedrock. Although broadly consistent with the differential weathering invoked by Wahrhaftig, the data also show that steps are eroding faster than treads, undermining Wahrhaftig’s explanation for the origins of the steps. The revised interpretation proposed here is that the landscape evolves by back-wearing of steps in addition to differential erosion due to differences in weathering of bare and soil-mantled granite.  相似文献   
78.
During the last decade there has been a significant rise in observations of blooms of the toxic cyanobacterium Lyngbya majuscula along the east coast of Queensland, Australia. Whether the increase in cyanobacterial abundance is a biological indicator of widespread water quality degradation or also a function of other environmental change is unknown. A bioassay approach was used to assesses the potential for runoff from various land uses to stimulate productivity of L. majuscula. In Moreton Bay, L. majuscula productivity was significantly (p<0.05) stimulated by soil extracts, which were high in phosphorus, iron and organic carbon. Productivity of L. majuscula from the Great Barrier Reef was also significantly (p<0.05) elevated by iron and phosphorus rich extracts, in this case seabird guano adjacent to the bloom site. Hence, it is possible that other L. majuscula blooms are a result of similar stimulating factors (iron, phosphorus and organic carbon), delivered through different mechanisms.  相似文献   
79.
Element partitioning in metal-light element systems is important to our understanding of planetary differentiation processes. In this study, solid-metal/liquid-sulfide, liquid-metal/liquid-sulfide and solid-metal/troilite partition coefficients (D) were determined for 18 elements (Ag, As, Au, Co, Cr, Cu, Ge, Ir, Ni, Os, Pd, Pt, Mo, Mn, Re, Ru, Se and W) in the graphite-saturated Fe-S-C system at 1 atm. Compared at the same liquid S concentration, the solid/liquid partition coefficients are similar to those in the Fe-S system, but there are systematic differences that appear to be related to interactions with carbon dissolved in the solid metal. Elements previously shown to be “anthracophile” generally have larger solid/liquid partition coefficients in the Fe-S-C system, whereas those that are not have similar or smaller partition coefficients in the Fe-S-C system. The partitioning of trace elements between C-rich and S-rich liquids is, in most cases, broadly similar to the partitioning between solid metal and S-rich liquid. The highly siderophile elements Os, Re, Ir and W are partitioned strongly into the C-rich liquid, with D ? 100. The partition coefficients for Pt, Ge and W decrease significantly at the transition to liquid immiscibility, while the partition coefficient for Mo increases sharply. The bulk siderophile element patterns of ureilite meteorities appear to be better explained by separation of S-rich liquid from residual C-rich metallic liquid at temperatures above the silicate solidus, rather than by separation of S-rich liquid from residual solid metal at lower temperatures.  相似文献   
80.
The submarine Mahukona Volcano, west of the island of Hawaii, is located on the Loa loci line between Kahoolawe and Hualalai Volcanoes. The west rift zone ridge of the volcano extends across a drowned coral reef at about-1150 m and a major slope break at about-1340 m, both of which represent former shoreines. The summit of the volcano apparently reached to about 250 m above sea level (now at-1100 m depth) did was surmounted by a roughly circular caldera. A econd rift zone probably extended toward the east or sutheast, but is completely covered by younger lavas from the adjacent subaerial volcanoes. Samples were vecovered from nine dredges and four submersible lives. Using subsidence rates and the compositions of flows which drape the dated shoreline terraces, we infer that the voluminous phase of tholeiitic shield growth ended about 470 ka, but tholeiitic eruptions continued until at least 435 ka. Basalt, transitional between tholeiitic and alkalic basalt, erupted at the end of tholeiitic volcanism, but no postshield-alkalic stage volcanism occurred. The summit of the volcano apparently subcided below sea level between 435 and 365 ka. The tholeiitic lavas recovered are compositionally diverse.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号