首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   142篇
  免费   2篇
  国内免费   2篇
测绘学   2篇
大气科学   14篇
地球物理   15篇
地质学   43篇
海洋学   38篇
天文学   19篇
综合类   1篇
自然地理   14篇
  2022年   2篇
  2019年   2篇
  2018年   2篇
  2017年   2篇
  2016年   3篇
  2015年   1篇
  2014年   3篇
  2013年   7篇
  2012年   5篇
  2011年   4篇
  2010年   6篇
  2009年   5篇
  2008年   5篇
  2007年   3篇
  2006年   8篇
  2005年   5篇
  2004年   5篇
  2003年   8篇
  2002年   5篇
  2001年   9篇
  2000年   6篇
  1999年   7篇
  1998年   10篇
  1997年   3篇
  1996年   4篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1987年   2篇
  1984年   2篇
  1983年   3篇
  1982年   2篇
  1981年   2篇
  1980年   6篇
  1978年   2篇
  1974年   1篇
  1972年   1篇
  1963年   1篇
排序方式: 共有146条查询结果,搜索用时 15 毫秒
111.
A red tide due toGymnodinium nagasakiense was observed in August 1988 in Tanabe Bay, Wakayama Prefecture, Japan. The maximum cell concentration ofG. nagasakiense reached 1×105 cells ml–1 at the surface water. From May to September 1988, the following were monitored: water temperature, salinity, chlorophylla, D.O., dissolved nutrients (NO2–N, NO3–N, NH4–N, PO4–P DON, DOP), particulate nutrients (PON, POP) and three dissolved selenium species [Se(IV), Se(VI), Organic Se]. Dissolved inorganic nitrogen (NO3–N, NH4–N) decreased but PON, POP, DON, DOP and inorganic phosphate increased at the peak of the bloom. The concentration of organic selenium increased up to the bloom initiation period which started on 5 July, and then the concentration of Se(IV) increased as the concentration of organic selenium decreased at the peak of the bloom (3 August). The strong relationship was found between the concentration of Se(IV) and the cell concentration ofG. nagasakiense (r 2=0.98). The Se(IV) requirement ofG. nagasakiense was 2.89×10–17 moles cell–1, which was agreed well with 4.4×10–17 moles cell–1 found in a laboratory experiment onG. nagasakiense using selenium spiked artificial sea water medium. The average ratio of Se(IV) to dissolved inorganic nitrogen (DIN) during the red tide bloom was 11441, the ratio of Se(IV) to DIN at the surface with the maximum cell concentration ofG. nagasakiense of 1×105 cells ml–1 was 1137. These results suggested that selenium may play an important role in red tide outbreak ofG. nagasakiense.  相似文献   
112.
N2O Production, Nitrification and Denitrification in an Estuarine Sediment   总被引:1,自引:0,他引:1  
The mechanisms regulating N2O production in an estuarine sediment (Tama Estuary, Japan) were studied by comparing the change in N2O production with those in nitrification and denitrification using an experimental continuous-flow sediment–water system with15N tracer (15N-NO−3 addition). From Feburary to May, both nitrification and denitrification in the sediment increased (246 to 716 μmol N m−2 h−1and 214 to 1260 μmol N m−2 h−1, respectively), while benthic N2O evolution decreased slightly (1560 to 1250 nmol N m−2 h−1). Apparent diffusion coefficients of inorganic nitrogen compounds and O2at the sediment–water interface, calculated from the respective concentration gradients and benthic fluxes, were close to the molecular diffusion coefficients (0·68–2·0 times) in February. However, they increased to 8·8–52 times in May except for that of NO−2, suggesting that the enhanced NO−3 and O2supply from the overlying water by benthic irrigation likely stimulated nitrification and denitrification. Since the progress of anoxic condition by the rise of temperature from February to May (9 to 16 °C) presumably accelerated N2O production through nitrification, the observed decrease in sedimentary N2O production seems to be attributed to the decrease in N2O production/occurrence of its consumption by denitrification. In addition to the activities of both nitrification and denitrification, the change in N2O metabolism during denitrification by the balance between total demand of the electron acceptor and supply of NO−3+NO−2 can be an important factor regulating N2O production in nearshore sediments.  相似文献   
113.
114.
A new balloon-borne optical particle counter has been developed to make in situ measurements of stratospheric aerosols. The intensity of light scattered at 60° from the forward direction by individual particles is measured. Aerosol number concentrations in seven size channels can be inferred. The counter has been calibrated using polystyrene and polyvinyl toluene latex spheres. There is good agreement between measured and calculated individual pulse intensities for aerosol with radii from 0.16 to 2.6 µm. The size resolution is limited by broadening of the pulse count/pulse height spectrum, arising mainly from the photoelectron statistics of photomultipliers. Stratospheric aerosol measurements have been made using this instrument at Kiruna (68°N, 21°E), Sweden, in February 1995, and at Aire sur l'Adour (44°N, 0°W), France, in 1992, 1993, and 1994. The uncertainties in the measurements are discussed. The retrieved aerosol concentrations and size distributions are presented, and shown to be broadly consistent with measurements made by the University of Wyoming optical particle counter.  相似文献   
115.
GAME-TIBET青藏高原云和降水综合观测概况及初步结果   总被引:13,自引:7,他引:6  
对中日合作青藏高原能量水分循环试验项目中云和降水的多普勒雷达观测使用的气象观测仪器和获取的资料等情况进行了总结,并给出了那曲地区水的日变化,不同 雨量计测量降水的对比分析,风速对测量降水影响,多普勒雷达资料的个例分析及云的数值模拟的等初步结果。  相似文献   
116.
The Kii Bifurcation Current is often found along the southwest coast of the Kii Peninsula, and its frequency of occurrence reaches about 70% in the period from 1988 to 1996 (Takeuchi et al., 1998a). In order to clarify the structure and short-period variability of the Kii Bifurcation Current, detailed observations were made four times on board the R/V Seisui-maru of Mie University on October 29–31, 1996, on June 24–26, 1997, October 14–16, 1997, and December 3–4, 1997. The measured horizontal structure of the Kii Bifurcation Current indicates that the eastern portion of the Current (eastward flow near Cape Shionomisaki) consists of a part of the current zone of the Kuroshio. It is shown that the current structure, including the Kii Bifurcation Current in the vicinity of Cape Shionomisaki, is stable when the Kuroshio is flowing in a stationary straight path, but that the current structure is considerably changed when small-scale eddies pass by the cape. Such short-period variation can be monitored by using the daily variation of the sea level difference between Kushimoto and Uragami. In particular, in the case of October 29–31, 1996, when an eminent small-scale eddy passed by Cape Shionomisaki, and when the Kuroshio axis tentatively moved southwards about 50 km apart from the coast, the Kii Bifurcation Current seems to have disappeared.  相似文献   
117.
The stable nitrogen isotope ratio (δ 15N) in macroalgae is effectively used as a time-integrated bioindicator to record nitrogen sources for primary producers during their growing periods in aquatic ecosystems. However, the utility of this tool is limited because the occurrence of these organisms is often restricted in space and time. To investigate the potential of chemical composition in sedimentary organic matter (SOM) as a proxy for time-integrated environmental conditions, nitrogen (N) and carbon (C) contents and their stable isotope ratios (δ 15N and δ 13C) were determined, and systematically cross-checked against corresponding values in macroalgae at the Shiraho fringing reef in Okinawa, Japan. Preliminary trials showed that δ 15N in SOM processed by the “wash-out method” for δ 13C analysis yielded similar δ 15N values to the bulk sediment, despite the loss of some SOM during the process. The amounts of organic matter and the ratio of the HCl-insoluble portion were variable within the reef, probably reflecting local vegetation and subsequent decomposition. The distribution of δ 15N and δ 13C in SOM showed similar trends to those of macroalgae, with mostly constant differences of 1.4‰ and −6.7‰, respectively. These differences throughout the reef appeared to be explained in terms of mixed contributions from macrophyte and epibenthic microalgae growing in different seasons and years, with their debris undergoing diagenetic alteration. Therefore, macroalgae and SOM δ-values can be used in a complementary manner, over various time scales, as indicators of the integrated effect of dissolved inorganic nitrogen (DIN) sources on coral reef ecosystems.  相似文献   
118.
The concentration of nutrients was measured during the spring phytoplankton bloom in Funka Bay over a 5-year period (1988–92). During the winter mixing period, nutrient concentrations were similar in every year except in 1990 when a high concentration of silicate was observed. There was interannual variation in the onset of the bloom, presumably depending on the stability of the water column. The bloom developed in early March when the Oyashio water (OW), which has a lower density than the existing winter water, flowed into the bay and the pycnocline formed near the bottom of the euphotic zone. In this case, high chl a was found only in the euphotic zone and nutrient utilization was limited to this zone. In the year when the inflow of OW was not observed by April, the bloom took place at the end of March without strong stratification and high chl a was found in the whole water column, accompanied by a decrease in nutrients. Interannual differences were found not only at the beginning of the decrease, but also in the thickness of the layer which showed a decrease in nutrients. Primary production from the beginning to the end of the spring bloom was estimated from the nutrient budget before and after the spring bloom. The integrated production over the spring bloom period ranged from 25 to 73 g C m-2, which accounts for 19–56% of the annual production in this bay. We found that the timing of the bloom was strongly dependent on the inflow of OW, but the amount of production was not clearly related to this timing.  相似文献   
119.
The whole core squeezing method was used to simultaneously obtain profiles of nitrous oxide (N2O), nitrogenous nutrients, and dissolved oxygen in sediments of Koaziro Bay, Japan (coastal water), the East China Sea (marginal sea), and the central Pacific Ocean (open ocean). In the spring of Koaziro Bay, subsurface peaks of interstitial N2O (0.5–3.5 cm depth) were observed, at which concentrations were higher than in the overlying water. This was also true for nitrate (NO3) and nitrite (NO2) profiles, suggesting that the transport of oxic overlying water to the depth through faunal burrows induced in situ N2O production depending on nitrification. In the summer of Koaziro Bay, sediment concentrations of N2O, NO3 and NO2 were lower than in the overlying water. In most East China Sea sediments, both N2O and NO3 decreased sharply in the top 0.5–2 cm oxic layer (oxygen: 15–130 μM), which may have indicated N2O and NO3 consumption by denitrification at anoxic microsites. N2O peaks at subsurface depth (0.5–6.5 cm) implied in situ production of N2O and/or its supply from the overlying water through faunal burrows. However, the occurrence of the latter process was not confirmed by the profiles of other constituents. In the central Pacific Ocean, the accumulation of N2O and NO3 in the sediments likely resulted from nitrification. Nitrous oxide fluxes from the sediments, calculated using its gradient at the sediment–water interface and the molecular diffusion coefficient, were −45 to 6.9 nmolN m−2 h−1 in Koaziro Bay in the spring, −29 to −21 nmolN m−2 h−1 in the summer, −46 to 37 nmolN m−2 h−1 in the East China Sea, 0.17 to 0.23 nmolN m−2 h−1 in the equatorial Pacific, and <±0.2 nmolN m−2 h−1 in the subtropical North Pacific, respectively.  相似文献   
120.
Natural Resources Research - Unlike in coastal and sedimentary basins, regional-scale exploration of groundwater resources using only geophysical methods is costlier in consolidated rocks such as...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号