首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2427篇
  免费   61篇
  国内免费   66篇
测绘学   71篇
大气科学   387篇
地球物理   536篇
地质学   599篇
海洋学   640篇
天文学   186篇
综合类   37篇
自然地理   98篇
  2024年   2篇
  2023年   5篇
  2022年   21篇
  2021年   39篇
  2020年   42篇
  2019年   50篇
  2018年   117篇
  2017年   112篇
  2016年   162篇
  2015年   77篇
  2014年   153篇
  2013年   215篇
  2012年   107篇
  2011年   145篇
  2010年   148篇
  2009年   148篇
  2008年   139篇
  2007年   137篇
  2006年   109篇
  2005年   103篇
  2004年   104篇
  2003年   69篇
  2002年   54篇
  2001年   49篇
  2000年   33篇
  1999年   33篇
  1998年   25篇
  1997年   18篇
  1996年   13篇
  1995年   9篇
  1994年   8篇
  1993年   9篇
  1992年   8篇
  1991年   10篇
  1990年   11篇
  1989年   5篇
  1988年   5篇
  1987年   7篇
  1986年   5篇
  1985年   9篇
  1984年   5篇
  1983年   3篇
  1982年   11篇
  1981年   2篇
  1980年   6篇
  1979年   2篇
  1975年   2篇
  1973年   1篇
  1972年   3篇
  1968年   1篇
排序方式: 共有2554条查询结果,搜索用时 0 毫秒
121.
Hyun-Sik Kim  Yong-Ku Shin   《Ocean Engineering》2007,34(8-9):1080-1088
Generally, the underwater flight vehicle (UFV) depth control system operates with the following problems: it is a multi-input multi-output (MIMO) system, it requires robustness, a continuous control input, and further, it has the speed dependency of controller parameters. To solve these problems, an expanded adaptive fuzzy sliding mode controller (EAFSMC), which is based on the decomposition method designed by using an expert knowledge and the decoupled sub-controllers and composition method designed by using the fuzzy basis function expansions (FBFEs), is proposed. To verify the performance of the EAFSMC, the depth control of UFV in various operating conditions is performed. Simulation results show that the EAFSMC solves all problems experienced in the UFV depth control system online.  相似文献   
122.
In this study, we investigate two internal wave generation methods in numerical modeling of time-dependent equations for water wave propagation, i.e., delta source function method and source term addition method, the latter of which has been called the line source method in literatures. We derive delta source functions for the Boussinesq-type equations and extended mild-slope equations. By applying the fractional step splitting method, we show that the delta source function method is equivalent to the source term addition method employing the energy velocity. This suggests that the energy velocity should be used rather than the phase velocity for the transport of incident wave energy in the source term addition method. Finally, the performance of the delta source function method is verified by accurately generating nonlinear cnoidal waves as well as linear waves for horizontally one-dimensional cases.  相似文献   
123.
This paper investigates the characteristics of bending moments, shear forces and stresses at unit connections of very large floating structures (VLFS) under wave loads. The responses of VLFS are calculated by solving multi-body motion equation considering hydroelasticity and connection stiffness. Hydroelastic responses are calculated by the direct method. Higher-order boundary element method (HOBEM) is used for fluid analysis and finite element method (FEM) is introduced for structural analysis. The equation of motion is modified to describe the unit connections by employing spring elements. Bending moments and shear forces at the connections are obtained from the dynamic equilibrium condition for pressures and inertia forces. Two types of VLFS units such as tandem arranged units and side-by-side arranged units are considered in the numerical examples. The influences of connection stiffness, wave frequency and heading angle on responses of VLFS are investigated through the numerical examples. Rigid body analysis along with hydroelastic analysis is also carried out in the numerical analysis and comparison of those two approaches is discussed.  相似文献   
124.
The summer distributions of planktonic microbial communities (heterotrophic and phtosynthetic bacteria, phtosynthetic and heterotrophic nanoflagellates, ciliate plankton, and microphytoplankton) were compared between inner and outer areas of Lake Sihwa, divided by an artificial breakwater, located on the western coast of Korea, in September 2003. The semienclosed, inner area was characterized by hyposaline surface water (<17 psu), and by low concentrations of dissolved oxygen (avg. 0.4 mg L1) and high concentrations of inorganic nutrients (nitrogenous nutrients >36 μM, phosphate <4 μM) in the bottom layer. Higher densities of heterotrophic bacteria and nanoflagellates also occurred in the inner area than did in the outer area, while microphytoplankton (mainly diatoms) occurred abundantly in the outer area. A tiny tintinnid ciliate, Tintinnopsis nana, bloomed into more than 106 cells L1 at the surface layer of the inner area, while its abundance was much lower (103-104 cells L1) in the outer area of the breakwater. Ciliate abundance was highly correlated with heterotrophic bacteria (r = 0.886, p < 0.001) and heterotrophic flagellates (r = 0.962, p < 0.001), indicating that rich food availability may have led to theT. nana bloom. These results suggest that the breakwater causes the eutrophic environment in artificial lakes with limited flushing of enriched water and develops into abundant bacteria, nanoflagellates, and ciliates.  相似文献   
125.
This study investigates the mechanical characteristics of light-weighted soils (LWS) consisting of expanded polystyrene (EPS), dredged clays, and cement through both unconfined and triaxial compression tests. The mechanical characteristics of the compressive strength of LWS are analyzed with varying initial water contents of dredged clays, EPS ratio, cement ratio, and curing pressure. In the triaxial compression test, it is found that the compressive strength of LWS associated with EPS is independent on the effective confining pressure. When both EPS ratio is less than 2% and cement ratio is more than 2%, the compressive strength rapidly decreases after the ultimate value. This signifies that the compressive strength-strain behavior is quite similar to that of the cemented soil. The ground improved by LWS has the compressive strength of 200 kPa associated with the optimized EPS ratio of 3-4% and initial water content of 165-175%. The ultimate compressive strength under both triaxial and unconfined compression tests is almost constant for a cement ratio of up to 2%.  相似文献   
126.
In the southeastern Yellow Sea, active seepage of hydrocarbon gases has been observed by high-resolution (3.5 kHz) seismic profiling both in 1987 and 2001, occurring through a large number of plumes from the topmost pre-Holocene sedimentary layer. It is strong enough to compensate for current speed, extending vertically up to the sea surface. The gas seepage often appears to be explosive to form craters and diapirs, although pockmarks are rare due to the redistribution of mobile palimpsest sands. In core-top seawater and sediments, the gases are characterized by high amounts of C2, homogenous 13C1 values and a large difference (19.7 on average) between 13C1 (–55.2 to –53.6 PDB) and 13C2 (–36.8 to –32.5 PDB) values. The gases are considered to be generated with a smaller amount of C1 at the early thermal cracking stage of labile source materials, after which the C2 gas is enriched in 13C by diffusion or biological alternation at the generation or accumulation site. The homogenous 13C1 values may be one of the geochemical characteristics of gases acquired at depth which are less altered in the case of rapid diffusive gas migration to the seafloor.  相似文献   
127.
To use two small fish Rivulus marmoratus (Cyprinodontiformes, Rivulidae) and the Japanese medaka Oryzias latipes (Belloniformes) as testing models in molecular ecotoxicology, we have cloned the cytochrome P450 1A (CYP1A) gene after screening of both genomic DNA libraries, and sequenced 11,863 and 7,243 bp including all the exons and introns with promoter regions, respectively. The Rivulus and the medaka CYP1A gene consisted of seven exons (including non-coding exons) with high homology to mammals. In the promoter region, Rivulus CYP1A gene has seven xenobiotic response elements (XREs) and two metal response elements (MREs), while the Japanese medaka CYP1A gene has six XREs and four MREs. Interestingly, medaka CYP1A gene has a number of MREs at the promoter, which may affect its response on metal exposure. We describe here the gene structure of both fish CYP1A genes.  相似文献   
128.
A review is made of circulation and currents in the southwestern East/Japan Sea (the Ulleung Basin), and the Korea/Tsushima Strait which is a unique conduit for surface inflow into the Ulleung Basin. The review particularly concentrates on describing some preliminary results from recent extensive measurements made after 1996. Mean flow patterns are different in the upstream and downstream regions of the Korea/Tsushima Strait. A high velocity core occurs in the mid-section in the upstream region, and splits into two cores hugging the coasts of Korea and Japan, the downstream region, after passing around Tsushima Island located in the middle of the strait. Four-year mean transport into the East/Japan Sea through the Korea/Tsushima Strait based on submarine cable data calibrated by direct observations is 2.4 Sv (1 Sv = 106 m3 s−1). A wide range of variability occurs for the subtidal transport variation from subinertial (2–10 days) to interannual scales. While the subinertial variability is shown to arise from the atmospheric pressure disturbances, the longer period variation has been poorly understood.Mean upper circulation of the Ulleung Basin is characterized by the northward flowing East Korean Warm Current along the east coast of Korea and its meander eastward after the separation from the coast, the Offshore Branch along the coast of Japan, and the anticyclonic Ulleung Warm Eddy that forms from a meander of the East Korean Warm Current. Continuous acoustic travel-time measurements between June 1999 and June 2001 suggest five quasi-stable upper circulation patterns that persist for about 3–5 months with transitions between successive patterns occurring in a few months or days. Disappearance of the East Korean Warm Current is triggered by merging the Dok Cold Eddy, originating from the pinching-off of the meander trough, with the coastal cold water carried Southward by the North Korean Cold Current. The Ulleung Warm Eddy persisted for about 20 months in the middle of the Ulleung Basin with changes in its position and spatial scale associated with strengthening and weakening of the transport through the Korea/Tsushima Strait. The variability of upper circulation is partly related to the transport variation through the Korea/Tsushima Strait. Movements of the coastal cold water and the instability of the polar front also appear to be important factors affecting the variability.Deep circulation in the Ulleung Basin is primarily cyclonic and commonly consists of one or more cyclonic cells, and an anticyclonic cell centered near Ulleung Island. The cyclonic circulation is conjectured to be driven by a net inflow through the Ulleung Interplain Gap, which serves as a conduit for the exchange of deep waters between the Japan Basin in the northern East Sea and the Ulleung Basin. Deep currents are characterized by a short correlation scale and the predominance of mesoscale variability with periods of 20–40 days. Seasonality of deep currents is indistinct, and the coupling of upper and deep circulation has not been clarified yet.  相似文献   
129.
130.
Most marginal seas in the North Pacific are fed by nutrients supported mainly by upwelling and many are undersaturated with respect to atmospheric CO2 in the surface water mainly as a result of the biological pump and winter cooling. These seas absorb CO2 at an average rate of 1.1 ± 0.3 mol C m−2yr−1 but release N2/N2O at an average rate of 0.07 ± 0.03 mol N m−2yr−1. Most of primary production, however, is regenerated on the shelves, and only less than 15% is transported to the open oceans as dissolved and particulate organic carbon (POC) with a small amount of POC deposited in the sediments. It is estimated that seawater in the marginal seas in the North Pacific alone may have taken up 1.6 ± 0.3 Gt (1015 g) of excess carbon, including 0.21 ± 0.05 Gt for the Bering Sea, 0.18 ± 0.08 Gt for the Okhotsk Sea; 0.31 ± 0.05 Gt for the Japan/East Sea; 0.07 ± 0.02 Gt for the East China and Yellow Seas; 0.80 ± 0.15 Gt for the South China Sea; and 0.015 ± 0.005 Gt for the Gulf of California. More importantly, high latitude marginal seas such as the Bering and Okhotsk Seas may act as conveyer belts in exporting 0.1 ± 0.08 Gt C anthropogenic, excess CO2 into the North Pacific Intermediate Water per year. The upward migration of calcite and aragonite saturation horizons due to the penetration of excess CO2 may also make the shelf deposits on the Bering and Okhotsk Seas more susceptible to dissolution, which would then neutralize excess CO2 in the near future. Further, because most nutrients come from upwelling, increased water consumption on land and damming of major rivers may reduce freshwater output and the buoyancy effect on the shelves. As a result, upwelling, nutrient input and biological productivity may all be reduced in the future. As a final note, the Japan/East Sea has started to show responses to global warming. Warmer surface layer has reduced upwelling of nutrient-rich subsurface water, resulting in a decline of spring phytoplankton biomass. Less bottom water formation because of less winter cooling may lead to the disappearance of the bottom water as early as 2040. Or else, an anoxic condition may form as early as 2200 AD. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号