首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39805篇
  免费   413篇
  国内免费   421篇
测绘学   987篇
大气科学   3284篇
地球物理   7929篇
地质学   13062篇
海洋学   3561篇
天文学   9056篇
综合类   137篇
自然地理   2623篇
  2021年   238篇
  2020年   325篇
  2019年   315篇
  2018年   655篇
  2017年   593篇
  2016年   939篇
  2015年   670篇
  2014年   911篇
  2013年   2013篇
  2012年   1100篇
  2011年   1562篇
  2010年   1289篇
  2009年   1869篇
  2008年   1664篇
  2007年   1568篇
  2006年   1486篇
  2005年   1358篇
  2004年   1291篇
  2003年   1245篇
  2002年   1171篇
  2001年   1027篇
  2000年   1033篇
  1999年   974篇
  1998年   890篇
  1997年   875篇
  1996年   751篇
  1995年   672篇
  1994年   592篇
  1993年   546篇
  1992年   542篇
  1991年   504篇
  1990年   509篇
  1989年   448篇
  1988年   418篇
  1987年   468篇
  1986年   460篇
  1985年   552篇
  1984年   611篇
  1983年   586篇
  1982年   547篇
  1981年   495篇
  1980年   466篇
  1979年   418篇
  1978年   422篇
  1977年   366篇
  1976年   336篇
  1975年   345篇
  1974年   353篇
  1973年   350篇
  1972年   205篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
961.
The crustal and upper mantle structure of the northwestern North Island of New Zealand is derived from the results of a seismic refraction experiment; shots were fired at the ends and middle of a 575 km-long line extending from Lake Taupo to Cape Reinga. The principal finding from the experiment is that the crust is 25 ± 2 km thick, and is underlain by what is interpreted to be an upper mantle of seismic velocity 7.6 ± 0.1 km s−1, that increases to 7.9 km s−1 at a depth of about 45 km. Crustal seismic velocities vary between 5.3 and 6.36 km s−1 with an average value of 6.04 km s−1. There are close geophysical and geological similarities between the north-western North Island of New Zealand and the Basin and Range province of the western United States. In particular, the conditions of low upper-mantle seismic velocities, thin crust with respect to surface elevation, and high heat-flow (70–100 mW m−2) observed in these two areas can be ascribed to their respective positions behind an active convergent margin for about the past 20 Myr.  相似文献   
962.
963.
ABSTRACT. Computer networks are often described in terms that imply a virtual space or place: electronic frontier, cyberspace, and information superhighway have been used to indicate computer networks as a whole; cafés, dungeons, and virtual offices are some of the “places” people refer to as being in or on networks. The use of this language, which I collectively call “virtual-place metaphors,” indicates three broad metaphorical themes: virtual architecture, electronic frontier, and cyberspace. The metaphors encourage control, surveillance, and capitalist expansion through computer technologies—and also evasion and resistance through computer technologies.  相似文献   
964.
This study presents an integrated provenance record for ancient forearc strata in southern Alaska. Paleocene–Eocene sedimentary and volcanic strata >2000 m thick in the southern Talkeetna Mountains record nonmarine sediment accumulation in a remnant forearc basin. In these strata, igneous detritus dominates conglomerate and sandstone detrital modes, including plutonic and volcanic clasts, plagioclase feldspar, and monocrystalline quartz. Volcanic detritus is more abundant and increases upsection in eastern sandstone and conglomerate. U‐Pb ages of >1600 detrital zircons from 19 sandstone samples document three main populations: 60–48 Ma (late Paleocene–Eocene; 14% of all grains), 85–60 Ma (late Cretaceous–early Paleocene; 64%) and 200–100 Ma (Jurassic–Early Cretaceous; 11%). Eastern sections exhibit the broadest distribution of detrital ages, including a principal population of late Paleocene–Eocene ages. In contrast, central and western sections yield mainly late Cretaceous–early Paleocene detrital ages. Collectively, our results permit reconstruction of individual fluvial drainages oriented transverse to a dissected arc. Specifically, new data suggest: (1) Detritus was eroded from volcanic‐plutonic sources exposed along the arcward margin of the sampled forearc basin fill, primarily Jurassic–Paleocene magmatic‐arc plutons and spatially limited late Paleocene–Eocene volcanic centers; (2) Eastern deposystems received higher proportions of juvenile volcanic detritus through time from late Paleocene–Eocene volcanic centers, consistent with emplacement of a slab window beneath the northeastern part of the basin during spreading‐ridge subduction; (3) Western deposystems transported volcanic‐plutonic detritus from Jurassic–Paleocene remnant arc plutons and local eruptive centers that flanked the northwestern part of the basin; (4) Diagnostic evidence of sediment derivation from accretionary‐prism strata exposed trenchward of the basin fill is lacking. Our results provide geologic evidence for latest Cretaceous–early Paleocene exhumation of arc plutons and marine forearc strata followed by nonmarine sediment accumulation and slab‐window magmatism. This inferred history supports models that invoke spreading‐ridge subduction beneath southern Alaska during Paleogene time, providing a framework for understanding a mature continental‐arc/forearc‐basin system modified by ridge subduction. Conventional provenance models predict reduced input of volcanic detritus to forearc basins during progressive exhumation of the volcanic edifice and increasing exposure of subvolcanic plutons. In contrast, our results show that forearc basins influenced by ridge subduction may record localized increases in juvenile volcanic detritus during late‐stage evolution in response to accumulation of volcanic sequences formed from slab‐window eruptive centers.  相似文献   
965.
966.
A number of experimental CO2 solubility data for silicate and aluminosilicate melts at a variety of P- T conditions are consistent with solution of CO2 in the melt by polymer condensation reactions such as SiO 4(m 4? +CO2(v)+Si n O 3n+1(m) (2n+1) ?Si n+1O 3n+4(m) (2n+4)? +CO 3(m )2? . For various metalsilicate systems the relative solubility of CO2 should depend markedly on the relative Gibbs free change of reaction. Experimental solubility data for the systems Li2O-SiO2, Na2O-SiO2, K2O-SiO2, CaO-SiO2, MgO-SiO2 and other aluminosilicate melts are in complete accord with predictions based on Gibbs Free energies of model polycondesation reactions. A rigorous thermodynamic treatment of published P- T-wt.% CO2 solubility data for a number of mineral and natural melts suggests that for the reaction CO2(m) ? CO2(v)
  1. CO2-melt mixing may be considered ideal (i.e., { \(a_{{\text{CO}}_{\text{2}} }^m = X_{{\text{CO}}_{\text{2}} }^m \) );
  2. \(\bar V_{{\text{CO}}_{\text{2}} }^m \) , the partial molal volume of CO2 in the melt, is approximately equal to 30 cm3 mole?1 and independent of P and T;
  3. Δ C p 0 is approximately equal to zero in the T range 1,400° to 1,650 °C and
  4. enthalpies and entropies of the dissolution reaction depend on the ratio of network modifiers to network builders in the melt. Analytic expressions which relate the CO2 content of a melt to P, T, and \(f_{{\text{CO}}_{\text{2}} } \) for andesite, tholeiite and olivine melilite melts of the form
$$\ln X_{{\text{CO}}_{\text{2}} }^m = \ln f_{{\text{CO}}_{\text{2}} } - \frac{A}{T} - B - \frac{C}{T}(P - 1)$$ have been determined. Regression parameters are (A, B, C): andesite (3.419, 11.164, 0.408), tholeiite (14.040, 5.440,0.393), melilite (9.226, 7.860, 0.352). The solubility equations are believed to be accurate in the range 3<P<30 kbar and 1,100°<T<1,650 °C. A series of CO2 isopleth diagrams for a wide range of T and P are drawn for andesitic, tholeiitic and alkalic melts.  相似文献   
967.
968.
Debris disks are found around some 15% of main sequencestars and their dust is thought to be continuallyreplenished in collisions between planetesimals inextrasolar Kuiper belts.While they were discovered in 1984 by IRAS, it is onlywith more recent imaging that their true nature has beenrevealed. This paper discusses recent debris disk images andtheir impact on our understanding of extrasolar systems.Importantly these images confirm the extrasolar Kuiper belthypothesis for most (but not all) debris diskcandidates and show that the planetesimals within thesedisks must have grown to at least a few km.Asymmetries in imaged disk structures also provide informationabout the planetary systems orbiting inside these planetesimalbelts. The impact of debris disk studies on our understandingof the evolution of our own Kuiper belt, as well as theirpotential to solve puzzles such as the origin of the missingmass and the outer edge of the Kuiper belt, is alsodiscussed.  相似文献   
969.
??The proper management of solid waste (SW) is a global environmental challenge. A major issue is the proper disposal of SW while balancing a wide range of criteria and working with different spatial data. In this study, we used geographic information system as a tool to perform multi-criteria decision analysis with an analytical hierarchy process to develop an environmental impact susceptibility model (EISM) for landfills. The model was applied to the state of California, USA and results are presented herein. In particular, the EISM considers factors such as geology, pedology, geomorphology, water resources, and climate as represented by 13 associated environmental indicators. The results of the EISM indicate that more than 75% of California’s territory is situated in areas with very low, low, and medium environmental impact susceptibility categories. However, in the remaining 25% of the state’s land, 61 landfills are located in the high and very high categories. These results are alarming because during the period from 2000 to 2015, these 61 landfills received approximately 308 million tons of SW, which corresponds to more than 57% of all SW disposed in California. The model results can be used toward mitigating the environmental impacts of these facilities.  相似文献   
970.
Nine samples from the Monte Rosa Granite have been investigated by microscopic, X-ray, wet chemical, electron microprobe, stable isotope and Rb-Sr and K-Ar methods. Two mineral assemblages have been distinguished by optical methods and dated as Permian and mid-Tertiary by means of Rb-Sr age determinations. The Permian assemblage comprises quartz, orthoclase, oligoclase, biotite, and muscovite whereas the Alpine assemblage comprises quartz, microcline, albite+epidote or oligoclase, biotite, and phengite. Disequilibrium between the Permian and Alpine mineral assemblages is documented by the following facts: (i) Two texturally distinguishable generations of white K-mica are 2 M muscovite (Si=3.1–3.2) and 2 M or 3 T phengite (Si=3.3–3.4). Five muscovites show Permian Rb-Sr ages and oxygen isotope fractionations indicating temperatures between 520 and 560 ° C; however, K-Ar ages are mixed or rejuvenated. Phengite always shows mid-Tertiary Rb-Sr ages, (ii) Two biotite generations can be recognized, although textural evidence is often ambiguous. Three out of four texturally old biotites show mid-Tertiary Rb-Sr cooling ages while the oxygen isotopic fractionations point to Permian, mixed or Alpine temperatures, (iii) Comparison of radiogenic and stable isotope relations indicates that the radiogenic isotopes in the interlayer positions of the micas were mobilized during Alpine time without recrystallization, that is, without breaking Al-O or Si-O bonds. High Ti contents in young muscovites and biotites also indicate that the octahedral (and tetrahedral) sites remained undisturbed during rejuvenation. (iv) Isotopic reversals in the order of O18 enrichment between K-feldspar and albite exist. Arguments for equilibrium during Permian time are meagre because of Alpine overprinting effects. Texturally old muscovites show high temperatures and Permian Rb-Sr ages in concordancy with Rb-Sr whole rock ages. For the tectonically least affected samples, excellent concordance between quartz-muscovite and quartz-biotite Permian temperatures implies oxygen isotope equilibrium in Permian time which was undisturbed during Alpine metamorphism. Arguments for equilibrium during the mid-Tertiary metamorphism are as follows: (i) Mid-Tertiary Rb-Sr mineral isochrons of up to six minerals exist, (ii) Oxygen isotope temperatures of coexisting Alpine phengites and biotites are concordant.The major factor for the adjustment of the Permian assemblages to Alpine conditions was the degree of Alpine tectonic overprinting rather than the maximum temperatures reached during the mid-Tertiary Alpine metamorphism. The lack of exchange with externally introduced fluid phases in the samples least affected by tectonism indicates that the Monte Rosa Granite stewed in its own juices. This seems to be the major cause for the persistence of Permian ages and corresponding temperatures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号