首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   121篇
  免费   3篇
  国内免费   9篇
测绘学   1篇
大气科学   7篇
地球物理   19篇
地质学   32篇
海洋学   48篇
天文学   22篇
自然地理   4篇
  2020年   3篇
  2019年   2篇
  2017年   3篇
  2016年   6篇
  2015年   3篇
  2014年   1篇
  2013年   2篇
  2012年   8篇
  2011年   4篇
  2010年   10篇
  2009年   7篇
  2008年   12篇
  2007年   15篇
  2006年   10篇
  2005年   3篇
  2004年   6篇
  2003年   1篇
  2002年   4篇
  2001年   6篇
  2000年   4篇
  1999年   2篇
  1998年   5篇
  1997年   2篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
  1984年   2篇
  1983年   2篇
  1981年   1篇
  1978年   2篇
  1976年   1篇
  1969年   1篇
排序方式: 共有133条查询结果,搜索用时 0 毫秒
61.
A high O3 episode was observed during 23–25 May 2004 at two high-mountain sites reflecting the regional pattern of air pollutants over East China. This episode lasted about three days with the maximum hourly O3 mixing ratios reaching 111 and 114 ppbv at Mt. Tai and Huang, respectively. Backward trajectories and meteorological analysis indicated that regional transport, associated with a weak high pressure system over the East China Sea, might play an important role in the formation of this high ozone episode. The nested air quality prediction modeling system (NAQPMS) was applied to investigate the formation and evolution of this high O3 event. The comparison of model results with observations showed that NAQPMS successfully reproduced the main observed patterns of O3 and meteorological parameters during the simulated period. The model results with emission over the Yangtze Delta and the East Central China switched on/off clearly showed that ozone and its precursors transported from the Yangtze Delta and the East Central China enhanced the high ozone episode at two sites, with a contribution of 20%–50% during the episode. In addition, based on process analysis with the model, chemical production and regional transport appeared to be the main causes of high ozone episode involving a large amount of high-ozone air masses and precursors transported from the surrounding areas. The horizontal transport is more active during the period of high ozone episode than that during the non-episode at Mt. Tai as well as Mt. Huang.  相似文献   
62.
The depositional environments and bivalve assemblages are determined for the Upper Cretaceous Hinoshima Formation of the Himenoura Group, Kamishima, Amakusa Islands, Kyushu, Japan. The Hinoshima Formation is characterized by a thick transgressive succession that varies from incised-valley-fill deposits to submarine slope deposits with high aggradation rates of depositional systems. The incised valley is filled with fluvial, bayhead delta, brackish-water estuary, and marine embayment deposits, and is overlain by thick slope deposits.Shallow marine bivalves are grouped into five fossil assemblages according to species composition: Glycymeris amakusensis (foreset beds of a bayhead delta), Nippononectes tamurai (foreset beds of a bayhead delta), Ezonuculana mactraeformisNucula formosa (central bay), Glycymeris amakusensisApiotrigonia minor (slope), and Inoceramus higoensisParvamussium yubarensis (slope). These bivalve assemblages all represent autochthonous and parautochthonous conditions except for a Glycymeris amakusensisApiotrigonia minor assemblage found in debris flow and slump deposits. The life habitats of these bivalves and the compositions of the assemblages are discussed in terms of the ecological history of fossil bivalves of the mid- to Late Cretaceous.  相似文献   
63.
The horizontal components from fourteen Ocean Bottom Seismometers deployed along four profiles focused along the western margin of the Jan Mayen microcontinent, North Atlantic, have been modelled with regard to S-waves, based on P-wave models obtained earlier. The seismic models have furthermore been constrained by 2D gravity modelling. High V p/V s-ratios (2.3–7.9) within the Cenozoic sedimentary section are attributed to significant porosities, whereas V p/V s-ratios in the order of 1.9–2.2 for the Mesozoic and Paleozoic sedimentary rocks indicate shale-dominated lithology throughout the area. The eastern side of the Jan Mayen Ridge is interpreted as a passive, volcanic margin, based on relatively high crustal V p/V s-ratios (1.9), whereas lower V p/V s-ratios (1.75–1.8) suggest the presence of intermediate composition crust and non-volcanic margin on the western side of the ridge. In the westernmost part of the Jan Mayen Basin, slightly increased upper mantle V p/V s-ratios may indicate some degree of serpentization of upper mantle peridotites.  相似文献   
64.
Time-series measurements of dissolved inorganic carbon (DIC) and nutrient concentrations were conducted in the northwestern North Pacific from October 2002 to August 2004. Assuming that data obtained in different years represented time-series seasonal data for a single year, vertical distributions of DIC and nutrients showed large seasonal variabilities in the surface layer (∼100 m). Seasonal variabilities in normalized DIC (nDIC) and nitrate concentrations at the sea surface were estimated to be 81–113 μmol kg−1 and 12.7–15.7 μmol kg−1, respectively, in the Western Subarctic Gyre. The variability in nutrients between May and July was generally at least double that in other seasons. In the Western Subarctic Gyre, estimations based on statistical analyses revealed that seasonal new production was 39–61 gC m−2 and tended to be higher in the southwestern regions or coastal regions. The seasonal new productions in the northwestern North Pacific were two or more times higher than in the North Pacific subtropical gyre and the northeastern North Pacific. It is likely that this difference is due to spatial variations in the concentrations of trace metals and the species of phytoplankton present. In addition, from estimations of surface pCO2 it was verified that the Western Subarctic Gyre is a source of atmospheric CO2 between February and May and a sink for CO2 between July and October.  相似文献   
65.
The horizontal components from twenty Ocean Bottom Seismometers deployed along three profiles near the Kolbeinsey Ridge, North Atlantic, have been modelled with regard to S-waves, based on P-wave models obtained earlier. Two profiles were acquired parallel to the ridge, and the third profile extended eastwards across the continental Jan Mayen Basin. The modelling requires a thin (few 100 m) layer with very high V p/V s-ratio (3.5–9.5) at the sea-floor in the area lacking sedimentary cover. The obtained V p/V s-ratios for the remaining part of layer 2A, 2B, 3 and upper mantle, correspond to the following lithologies: pillow lavas, sheeted dykes, gabbro and peridotite, respectively. All crustal layers exhibit a decreasing trend in V p/V s-ratio away-from-the-axis, interpreted as decreasing porosity and/or crack density in that direction. A significant S-wave azimuthal anisotropy is observed within the thin uppermost layer of basalt near the ridge. The anisotropy is interpreted as being caused by fluid-filled microcracks aligned along the direction of present-day maximum compressive stress, and indicates crustal extension at the ridge itself and perpendicular-to-the-ridge compression 12 km off axis. Spreading along the Kolbeinsey Ridge has most likely been continuous since its initiation ca. 25 Ma: The data do not suggest the presence of an extinct spreading axis between the Kolbeinsey Ridge and the Aegir Ridge as has been proposed earlier. The V p/V s-ratios found in the Jan Mayen Basin are compatible with continental crust, overlain by a sedimentary section dominated by shale.  相似文献   
66.
On the Vøring volcanic passive margin offshore mid-Norway, NE Atlantic, a lower crustal body with P-wave velocities in the range of 7.1–7.7 km/s has been mapped by twenty two-dimensional Ocean Bottom Seismograph (OBS) profiles. The main aim of the present paper is to evaluate to what extent the lower crust is consistent with magmatic intrusions or serpentinized peridotite. The relatively low V p/V s ratios of 1.75–1.78 modelled for the lower crust under the continental part of the Vøring Plateau are consistent with mafic intrusions mixed with blocks of stretched continental crust, but not with the presence of partially serpentinized peridotites. The lower crustal high-velocity body is restricted to the area of the Late Cretaceous/Early Tertiary rift that lead to continental break-up in Early Eocene. The same model can explain the observations in the northern Vøring Basin, but in the central and southern Vøring Basin the seismic velocities do not preclude a model involving serpentinized peridotite in addition to intrusions and continental remnants. On the west Iberia non-volcanic margin a similar layer is interpreted as serpentinized peridotite. The existence of Moho reflections, the observation of S-wave anisotropy but absence of P-wave anisotropy, uncertainties regarding supply of water to allow for significant serpentinization and very low stretching factors compared with the west Iberia Margin, are among factors that argue against the presence of serpentinized peridotite in the Vøring Basin.  相似文献   
67.
68.
The performance of the “version 2” Global Imager (GLI) standard atmospheric correction algorithm, which includes empirical absorptive aerosol correction and sun glint correction, was evaluated using data collected with handheld above-water SIMBADA radiometers during 23 cruises of opportunity (research vessels, merchant ships), mostly in the North Atlantic and European seas. A number of 100 match-up data sets of GLI-derived and SIMBADA-measured normalized water-leaving radiance (nL W ) and aerosol optical thickness (AOT) were sorted out, using objective selection criteria, and analyzed. The Root-Mean-Square (RMS) difference between GLI and SIMBADA nL W was about 0.32 μW/cm2/nm/sr for the 412 nm band, showing improvement by 30% in RMS difference with respect to the conventional “version 1” GLI atmospheric correction algorithm, and the mean difference (or bias) was reduced significantly. For AOT, the RMS difference was 0.1 between GLI estimates and SIMBADA measurements and the bias was small (a few 0.01), but the ?ngstr?m exponent was systematically underestimated, by 0.4 on average, suggesting a potential GLI calibration offset in the near infrared. The nL W differences were not correlated to AOT, although performance was best in very clear conditions (AOT less than 0.05 in the 865 nm band). Despite the relatively large scatter between estimated and measured nL W , the derived chlorophyll-a concentration estimates, applying the same ratio algorithm (GLI OC4V4) to GLI and SIMBADA, were consistent and highly correlated in the range of 0.05–2 μg/l. The large variability in chlorophyll-a concentration estimate for clear clean water areas (e.g. with the concentration range lower than about 0.05 μg/l) turns out to be due to the nature of the “band ratio” based in-water algorithm.  相似文献   
69.
Abstract— A new organic parameter is proposed to show a chemical sequence of organic matter in carbonaceous chondrites, using carbon, hydrogen, and nitrogen concentrations of solvent‐insoluble and high‐molecular weight organic matter (macromolecules) and the molecular abundance of solvent‐extractable organic compounds. The H/C atomic ratio of the macromolecule purified from nine CM chondrites including the Murchison, Sayama, and seven Antarctic meteorites varies widely from 0.11 to 0.72. During the H/C change of ?0.7 to ?0.3, the N/C atomic ratio remains at ?0.04, followed by a sharp decline from ?0.040 to ?0.017 between H/C ratios from ?0.3 to ?0.1. The H/CN/C sequence shows different degrees of organic matter thermal alteration among these chondrites in which the smaller H/C‐N/C value implies higher alteration levels on the meteorite parent body. In addition, solvent‐extractable organic compounds such as amino acids, carboxylic acids, and polycyclic aromatic hydrocarbons are abundant only in chondrites with macromolecular H/C values >?0.5. These organic compounds were extremely depleted in the chondrites with a macromolecular H/C value of <?0.5. Possibly, most solvent‐extractable organic compounds could have been lost during the thermal alteration event that caused the H/C ratio of the macromolecule to fall below 0.4.  相似文献   
70.
The collapse of marginally Jeans-unstable primordial gas clouds in the presence of a UV radiation field is discussed. Assuming that the dynamical collapse proceeds approximately in an isothermal self-similar fashion, we investigate the thermal evolution of the collapsing central core until H2 cooling dominates photoheating and the temperature drops to below 104 K. Consequently, the mass of the cooled core is evaluated as M cool=3.6×106 M ( I 21/1)−0.32. This scale depends only on the incident UV intensity, and provides a lower limit to the mass of collapsed objects in the UV radiation field.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号