首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   83291篇
  免费   904篇
  国内免费   1376篇
测绘学   2905篇
大气科学   5879篇
地球物理   16401篇
地质学   31849篇
海洋学   6424篇
天文学   15807篇
综合类   2279篇
自然地理   4027篇
  2022年   400篇
  2021年   660篇
  2020年   688篇
  2019年   828篇
  2018年   6241篇
  2017年   5444篇
  2016年   4325篇
  2015年   1178篇
  2014年   1799篇
  2013年   3088篇
  2012年   2887篇
  2011年   5014篇
  2010年   4206篇
  2009年   5140篇
  2008年   4385篇
  2007年   4968篇
  2006年   2543篇
  2005年   1893篇
  2004年   2090篇
  2003年   1998篇
  2002年   1895篇
  2001年   1523篇
  2000年   1385篇
  1999年   1159篇
  1998年   1170篇
  1997年   1157篇
  1996年   917篇
  1995年   884篇
  1994年   826篇
  1993年   694篇
  1992年   643篇
  1991年   645篇
  1990年   635篇
  1989年   649篇
  1988年   571篇
  1987年   663篇
  1986年   596篇
  1985年   709篇
  1984年   817篇
  1983年   745篇
  1982年   719篇
  1981年   669篇
  1980年   595篇
  1979年   579篇
  1978年   580篇
  1977年   506篇
  1976年   460篇
  1975年   458篇
  1974年   440篇
  1973年   509篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
871.
R. P. Kane 《Solar physics》2006,233(1):107-115
This paper examines the variations of coronal mass ejections (CMEs) and interplanetary CMEs (ICMEs) during solar cycle 23 and compares these with those of several other indices. During cycle 23, solar and interplanetary parameters had an increase from 1996 (sunspot minimum) to ∼2000, but the interval 1998–2002 had short-term fluctuations. Sunspot numbers had peaks in 1998, 1999, 2000 (largest), 2001 (second largest), and 2002. Other solar indices had matching peaks, but the peak in 2000 was larger than the peak in 2001 only for a few indices, and smaller or equal for other solar indices. The solar open magnetic flux had very different characteristics for different solar latitudes. The high solar latitudes (45–90) in both N and S hemispheres had flux evolutions anti-parallel to sunspot activity. Fluxes in low solar latitudes (0–45) evolved roughly parallel to sunspot activity, but the finer structures (peaks etc. during sunspot maximum years) did not match with sunspot peaks. Also, the low latitude fluxes had considerable N–S asymmetry. For CMEs and ICMEs, there were increases similar to sunspots during 1996–2000, and during 2000–2002, there was good matching of peaks. But the peaks in 2000 and 2001 for CMEs and ICMEs had similar sizes, in contrast to the 2000 peak being greater than the 2001 peak for sunspots. Whereas ICMEs started decreasing from 2001 onwards, CMEs continued to remain high in 2002, probably due to extra contribution from high-latitude prominences, which had no equivalent interplanetary ICMEs or shocks. Cosmic ray intensity had features matching with those of sunspots during 2000–2001, with the 2000 peak (on a reverse scale, actually a cosmic ray decrease or trough) larger than the 2001 peak. However, cosmic ray decreases started with a delay and ended with a delay with respect to sunspot activity.  相似文献   
872.
The physical meaning of the terms of the potential and kinetic energy expressions, expanded by means of the density variation function for a nonuniform self-gravitating sphere, is discussed. The terms of the expansions represent the energy and the moment of inertia of the uniform sphere, the energy and the moment of inertia of the nonuniformities interacting with the uniform sphere, and the energy of the nonuniformities interacting with each other. It follows from the physical meaning of the above components of the energy structure, and also from the observational fact of the expansion of the Universe that the phase transition, notably, fusion of particles and nuclei and condensation of liquid and solid phases of the expanded matter accompanied by release of energy, must be the physical cause of initial thermal and gravitational instability of the matter. The released kinetic energy being constrained by the general motion of the expansion, develops regional and local turbulent (cyclonic) motion of the matter, which should be the second physical effect responsible for the creation of celestial bodies and their rotation.  相似文献   
873.
Type II radio bursts are produced by material moving outwards in the solar atmosphere. Their drift in frequency allows the calculation of the radial speed with which the shock is moving- very basic information in assessing the likelihood that the shock will reach the Earth and its time of arrival. This paper compares the shock speeds derived from radio bursts observed by the Swept Frequency Interferometric Radiometer (SFIR) equipment at the US Air Force Radio Solar Telescope Network (RSTN) of observatories with those measured with the Culgoora radiospectrograph operated by IPS Radio and Space Services. The SFIR shock speeds are found to be 1.5–3.0 times larger than the Culgoora values which are consistent with earlier results. This difference appears to originate from the incorrect interpretation of events as a result of the smaller frequency range of the SFIR equipment.  相似文献   
874.
Observations of whistlers during quiet times made at low-latitude ground station Nainital (geomag. lat. 19 1 N) are used to deduce plasmasphere-ionosphere coupling fluxes. The whistler data from 3 magnetically quiet days are presented that show a smooth decrease in dispersion with time. This decrease in dispersion is interpreted in terms of a corresponding decrease in electron content of tubes of ionization. The electron densities, electron tube contents (1016 el/m2-tube) and coupling fluxes (10 el m–1 s–2) are computed by means of an accurate curve fitting method developed by Tarcsai (1975) and are in good agreement with the results reported by other workers.  相似文献   
875.
Photospheric magnetic fields were studied using the Kitt Peak synoptic maps for 1976?–?2003. Only strong magnetic fields (B>100 G) of the equatorial region were taken into account. The north–south asymmetry of the magnetic fluxes was considered as well as the imbalance between positive and negative fluxes. The north–south asymmetry displays a regular alternation of the dominant hemisphere during the solar cycle: the northern hemisphere dominated in the ascending phase, the southern one in the descending phase during Solar Cycles 21?–?23. The sign of the imbalance did not change during the 11 years from one polar-field reversal to the next and always coincided with the sign of the Sun’s polar magnetic field in the northern hemisphere. The dominant sign of leading sunspots in one of the hemispheres determines the sign of the magnetic-flux imbalance. The sign of the north–south asymmetry of the magnetic fluxes and the sign of the imbalance of the positive and the negative fluxes are related to the quarter of the 22-year magnetic cycle where the magnetic configuration of the Sun remains constant (from the minimum where the sunspot sign changes according to Hale’s law to the magnetic-field reversal and from the reversal to the minimum). The sign of the north–south asymmetry for the time interval considered was determined by the phase of the 11-year cycle (before or after the reversal); the sign of the imbalance of the positive and the negative fluxes depends on both the phase of the 11-year cycle and on the parity of the solar cycle. The results obtained demonstrate the connection of the magnetic fields in active regions with the Sun’s polar magnetic field in the northern hemisphere.  相似文献   
876.
877.
We study the solar-cycle variation of the zonal flow in the near-surface layers of the solar convection zone from the surface to a depth of 16 Mm covering the period from mid-2001 to mid-2013 or from the maximum of Cycle 23 through the rising phase of Cycle 24. We have analyzed Global Oscillation Network Group (GONG) and Helioseismic and Magnetic Imager (HMI) Dopplergrams with a ring-diagram analysis. The zonal flow varies with the solar cycle showing bands of faster-than-average flows equatorward of the mean latitude of activity and slower-than-average flows on the poleward side. The fast band of the zonal flow and the magnetic activity appear first in the northern hemisphere during the beginning of Cycle 24. The bands of fast zonal flow appear at mid-latitudes about three years in the southern and four years in the northern hemisphere before magnetic activity of Cycle 24 is present. This implies that the flow pattern is a direct precursor of magnetic activity. The solar-cycle variation of the zonal flow also has a poleward branch, which is visible as bands of faster-than-average zonal flow near 50° latitude. This band appears first in the southern hemisphere during the rising phase of the Cycle 24 and migrates slowly poleward. These results are in good agreement with corresponding results from global helioseismology.  相似文献   
878.
We have analyzed a set of 25 interacting events which are associated with the DH type II bursts. These events are selected from the Coronal Mass Ejections (CMEs) observed during the period 1997–2010 in SOHO/LASCO and DH type IIs observed in Wind/WAVES. Their pre and primary CMEs from nearby active regions are identified using SOHO/LASCO and EIT images and their height–time diagrams. Their interacting time and height are obtained, and their associated activities, such as, flares and Solar Energetic Particles (>10 pfu) are also investigated. Results from the analysis are: primary CMEs are much faster than the pre-CMEs, their X-ray flares are also stronger (X- and M-class) compared to the flares (C- and M-class) of pre-CMEs. Most of the events (22/25) occurred during the period 2000–2006. From the observed width and speed of pre and primary CMEs, it is found that the pre-CMEs are found to be less energetic than the primary CMEs. While the primary CMEs are tracked up to the end of LASCO field of view (30 Rs), most of the pre-CMEs can be tracked up to <26 Rs. The SEP intensity is found to be related with the integrated flux of X-ray flares associated with the primary CMEs for nine events originating from the western region.  相似文献   
879.
Solar System Research - A method has been developed for detecting impact orbits of asteroids in the confidence ellipsoid of the initial parameters of motion. The method consists in conditionally...  相似文献   
880.
Abstract— A layer of tektite glass and shock-metamorphosed grains found in an upper Eocene section of core 21 from DSDP Site 612 taken on the continental slope off New Jersey may belong to the North American tektite strewn field. However, the Site 612 glasses generally have higher K2O and lower Na2O contents for a given SiO2 content and different Sr and Nd isotopic compositions. In order to better define the layer, a series of samples was taken continuously through the layer at 1 cm intervals. Tektite fragments are in an 8 cm thick layer; microtektites are concentrated in the upper 4 cm, while spherules with “crystalline” textures (microkrystites) are concentrated in the lower half of the layer. Millimeter-size splash forms are mostly in the lower part of the tektite-bearing layer. Rock and mineral grains showing evidence of shock metamorphism are abundant in the upper half of the tektite-bearing layer. Coesite is abundant, and stishovite was found in one rock fragment. The size and abundance of the tektite glass and the abundance of shocked debris indicate that Site 612 is relatively close to the source crater, which may be to the north of Site 612 on the coastal plain or adjacent continental shelf.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号