首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   310篇
  免费   8篇
  国内免费   6篇
测绘学   4篇
大气科学   26篇
地球物理   53篇
地质学   74篇
海洋学   131篇
天文学   16篇
综合类   5篇
自然地理   15篇
  2022年   1篇
  2021年   5篇
  2020年   5篇
  2019年   9篇
  2018年   10篇
  2017年   17篇
  2016年   19篇
  2015年   14篇
  2014年   20篇
  2013年   15篇
  2012年   13篇
  2011年   12篇
  2010年   18篇
  2009年   26篇
  2008年   17篇
  2007年   15篇
  2006年   6篇
  2005年   10篇
  2004年   19篇
  2003年   14篇
  2002年   7篇
  2001年   6篇
  2000年   2篇
  1999年   6篇
  1998年   2篇
  1997年   3篇
  1996年   3篇
  1995年   4篇
  1994年   3篇
  1993年   2篇
  1992年   3篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1987年   2篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   4篇
  1981年   2篇
  1980年   1篇
  1977年   1篇
排序方式: 共有324条查询结果,搜索用时 46 毫秒
51.
Many bulk carrier losses have been reported of late, and one of the possible causes of such casualties is thought to be the structural failure of aging hulls in rough weather. Clearly, in such cases, vessels that start out being adequate somehow become marginal later in life. Fatigue and corrosion-related potential problems may be the most important factors affecting such age related vessel damage. With respect to fatigue, extensive studies have been done worldwide both experimentally and theoretically, and the results have been applied to some extent. However, in the case of corrosion effects, additional research is still needed to better understand, clarify and address the various strength uncertainties and their effects on structural behaviour. This paper develops a probabilistic corrosion rate estimation model for the longitudinal strength members of bulk carriers. The model is based on available statistical data for corrosion of existing bulk carriers. The corrosion data collected are documented for future use.  相似文献   
52.
Hwang  Sooncheol  Son  Sangyoung  Lee  Chilwoo  Yoon  Hyun-Doug 《Natural Hazards》2020,104(2):1389-1411
Natural Hazards - Future storm-induced inundation risks were assessed by performing storm surge modeling based on Typhoon Maemi (2003) under the generic climate change scenarios proposed by IPCC...  相似文献   
53.
This study presents the correlations between quantified shape parameters and geotechnical properties for nine sand specimens. Four shape parameters, sphericity, convexity, elongation and slenderness, were quantified with two-dimensional microscopic images with the aid of image processing techniques. An instrumented oedometer cell is used to measure compressibility, thermal conductivity and shear wave velocity during loading, unloading and reloading stages. As the particle shape inherently determines the initial loose packing condition, initial void ratio and shape parameters are well correlated with compressibility. The applied stress in soils increases the interparticle contact area and contact quality; round particles tend to achieve higher thermal conductivity and shear wave velocity during stress-induced volume change. Multiple linear regression is implemented to capture the relative contributions of involved variables, revealing that the thermal evolution is governed by the initial packing density and particle shape. The experimental observations underscore the predominant effect that particle shape has on the geomechanical and physical properties upon stress-induced soil behavior.  相似文献   
54.
The M w 3.2-induced seismic event in 2006 due to fluid injection at the Basel geothermal site in Switzerland was the starting point for an ongoing discussion in Europe on the potential risk of hydraulic stimulation in general. In particular, further development of mitigation strategies of induced seismic events of economic concern became a hot topic in geosciences and geoengineering. Here, we present a workflow to assess the hazard of induced seismicity in terms of occurrence rate of induced seismic events. The workflow is called Forward Induced Seismic Hazard Assessment (FISHA) as it combines the results of forward hydromechanical-numerical models with methods of time-dependent probabilistic seismic hazard assessment. To exemplify FISHA, we use simulations of four different fluid injection types with various injection parameters, i.e. injection rate, duration and style of injection. The hydromechanical-numerical model applied in this study represents a geothermal reservoir with preexisting fractures where a routine of viscous fluid flow in porous media is implemented from which flow and pressure driven failures of rock matrix and preexisting fractures are simulated, and corresponding seismic moment magnitudes are computed. The resulting synthetic catalogues of induced seismicity, including event location, occurrence time and magnitude, are used to calibrate the magnitude completeness M c and the parameters a and b of the frequency-magnitude relation. These are used to estimate the time-dependent occurrence rate of induced seismic events for each fluid injection scenario. In contrast to other mitigation strategies that rely on real-time data or already obtained catalogues, we can perform various synthetic experiments with the same initial conditions. Thus, the advantage of FISHA is that it can quantify hazard from numerical experiments and recommend a priori a stimulation type that lowers the occurrence rate of induced seismic events. The FISHA workflow is rather general and not limited to the hydromechanical-numerical model used in this study and can therefore be applied to other fluid injection models.  相似文献   
55.
Above- and below-ground productivities and tissue N content were measured monthly to quantify N incorporation to sustain eelgrass growth in Koje Bay on the south coast of Korea from January to December 2002. N acquisition was also estimated through measurements of N uptake kinetics, tissue biomass, and in situ inorganic N concentrations in water column and sediments. Above- and below-ground productivities were highest in summer and lowest in late fall and winter. Leaf tissue N content was highest in December and lowest in July, while rhizome tissue N content was highest in October and lowest in April. Estimated monthly N incorporation by leaf tissues based on the leaf productivity and N content ranged from 0.4 g N m?2 month?1 in November to 2.0 g N m?2 month?1 in May. N incorporation by below-ground tissues ranged from 0.1 g N m?2 month?1 in February to 0.2 g N m?2 month?1 in October. Annual whole plant N incorporation was 14.5 g N m?2 y?1, and N incorporation by leaf tissues accounted for about 87 % of total N incorporation. Maximum uptake rate (V max ) and half saturation constant (K m ) of leaf NH4 + uptake were significantly lower than those of root NH4 + uptake. Above- and below-ground biomass ranged from 20.8 g DW m?2 and 8.6 g DW m?2 in winter to 350.0 g DW m?2 and 81.3 g DW m?2 in spring, respectively. NH4 + concentrations varied from 0.2 to 4.3 mM in water column and from 93.0 to 551.7 mM in sediment pore water. Based on these measurements, annual N acquisition by root tissues contributed slightly higher than that by leaf tissues to total plant N acquisition. During winter, monthly leaf N acquisition was lower than monthly leaf N incorporation. This implies that Z. marina has internal nitrogen retention system to offset the shortage and excess of nitrogen.  相似文献   
56.
Calibration chamber tests were conducted on open‐ended model piles driven into dried siliceous sands with different soil conditions in order to clarify the effect of soil conditions on load transfer mechanism in the soil plug. The model pile used in the test series was devised so that the bearing capacity of an open‐ended pile could be measured as three components: outside shaft resistance, plug resistance, and tip resistance. Under the assumption that the unit shaft resistance due to pile‐soil plug interaction varies linearly near the pile tip, the plug resistance was estimated. The plug capacity, which was defined as the plug resistance at ultimate condition, is mainly dependent on the ambient lateral pressure and relative density. The length of wedged plug that transfers the load decreases with the decrease of relative density, but it is independent of the ambient pressure and penetration depth. Under several assumptions, the value of earth pressure coefficient in the soil plug can be calculated. It gradually reduces with increase in the longitudinal distance from the pile tip. At the bottom of the soil plug, it tends to decrease with increase in the penetration depth and relative density, and to increase with the increase of ambient pressure. This may be attributed to (1) the decrease of friction angle as a result of increase in the effective vertical stress, (2) the difference in the dilation degree of the soil plug during driving with ambient pressures, and (3) the difference in compaction degree of soil plug during driving with relative densities. Based on the test results, an empirical equation was suggested to compute the earth pressure coefficient to be used in the calculation of plug capacity using one‐dimensional analysis, and it produces proper plug capacities for all soil conditions.  相似文献   
57.
To investigate the behavior of dredged-sea-sand fill compacted inside tide embankments with a damaged geosynthetic mat, centrifugal model tests and numerical simulation were conducted, both considering variations in sea level. The results from the three centrifugal model tests demonstrate that the subsidence of the dredged-sea-sand fill inside tide embankments with a damaged geosynthetic mat was strongly affected by the loss of dredged-sea-sand into the filter layers with large particles and a decrease in the bearing capacity of the filter layers with small particles. In addition, a comparison of the test and simulation results confirms that the loss of sand into the filter layer and the subsidence of the dredged-sea-sand fill were well reproduced by the numerical simulation.  相似文献   
58.
An inclined lidar with vertical resolution of 0.4 m was used for detailed boundary layer studies and to link observations at Zeppelin Mountain (474 m) and Ny-Ålesund, Svalbard. We report on the observation of aerosol layers directly above the Kongsfjord. On 29 April 2007, a layer of enhanced backscatter was observed in the lowest 25 m above the open water surface. The low depolarization ratio indicated spherical particles. In the afternoon, this layer disappeared. The ultrafine particle concentration at Zeppelin and Corbel station (close to the Kongsfjord) was low. On 1 May 2007, a drying process in the boundary layer was observed. In the morning, the atmosphere up to Zeppelin Mountain showed enhanced values of the backscatter coefficient. Around noon, the top of the highly reflecting boundary layer decreased from 350 to 250 m. The top of the boundary layer observed by lidar was confirmed by radiosonde data.  相似文献   
59.
We examined the respiration rate of Aurelia aurita medusae at 20 °C and 28 °C to evaluate minimum metabolic demands of medusae population in Sihwa Lake, Korea during summer. While weight specific respiration rates of medusae were constant and irrespective to the wet weight (8?C220 g), they significantly varied in respect to temperatures (p<0.001, 0.11±0.03 mg C g?1 of medusa d?1 at 20°C and 0.28±0.11 mg C g?1 of medusa d?1 at 28 °C in average, where Q 10 value was 2.62). The respiration rate of medusae was defined as a function of temperature (T, °C) and body weight (W, g) according to the equation, R=0.13×2.62(T-20)/10 W 0.93. Population minimum food requirement (PMFR) was estimated from the respiration rate as 15.06 and 4.86 mg C m?3 d?1 in June and July, respectively. During this period, increase in bell diameter and wet weight was not significant (p=1 in the both), suggesting that the estimated PMFR closely represented the actual food consumption in the field. From July to August, medusae grew significantly at 0.052 d-1, thus the amount of food ingested by medusae population in situ was likely to exceed the PMFR (1.27 mg C m?3 d?1) during the period. In conclusion, the medusae population of higher density during June and July had limited amount of food, while those of lower in July and August ingested enough food for growth.  相似文献   
60.
Dinoflagellate cysts acquired from sediment cores were analyzed in order to reconstruct historical nutrient levels in Gamak Bay, Korea and Ariake Bay, Japan. Dinoflagellate cyst assemblages in Gamak Bay were characterized by high proportions of heterotrophic cysts such as Brigantedinium spp., Protoperidinium americanum and Polykrikos cysts, which suggested that nutrients levels may have already been high before 1970s, and then increased further to the hypertrophic conditions of the 1990s. In contrast, dinoflagellate cyst assemblages in Ariake Bay were characterized by high relative abundances of Lingulodinium machaerophorum and Spiniferites spp., which suggested that nutrient levels in Ariake Bay had increased gradually since the mid 1960s, and may have been significantly enhanced by the mid 1980s. Dinoflagellate cyst assemblages reflecting environmental changes in the two bays are contrasting, perhaps due to different nutrient enrichment mechanisms. This suggests that the indicators of nutrient levels encoded in dinoflagellate cyst assemblages may exhibit site-specific information.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号