首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   355篇
  免费   20篇
  国内免费   13篇
测绘学   18篇
大气科学   22篇
地球物理   119篇
地质学   180篇
海洋学   10篇
天文学   14篇
综合类   5篇
自然地理   20篇
  2023年   2篇
  2022年   10篇
  2021年   13篇
  2020年   30篇
  2019年   19篇
  2018年   40篇
  2017年   37篇
  2016年   42篇
  2015年   23篇
  2014年   25篇
  2013年   30篇
  2012年   30篇
  2011年   24篇
  2010年   16篇
  2009年   8篇
  2008年   6篇
  2007年   6篇
  2006年   8篇
  2004年   3篇
  2003年   2篇
  2002年   3篇
  2000年   2篇
  1996年   1篇
  1993年   1篇
  1991年   1篇
  1989年   3篇
  1988年   1篇
  1982年   1篇
  1980年   1篇
排序方式: 共有388条查询结果,搜索用时 31 毫秒
281.
ABSTRACT

Spatial variation of Urban Land Surface Temperature (ULST) is a complex function of environmental, climatic, and anthropogenic factors. It thus requires specific techniques to quantify this phenomenon and its influencing factors. In this study, four models, Random Forest (RF), Generalized Additive Model (GAM), Boosted Regression Tree (BRT), and Support Vector Machine (SVM), are calibrated to simulate the ULST based on independent factors, i.e., land use/land cover (LULC), solar radiation, altitude, aspect, distance to major roads, and Normalized Difference Vegetation Index (NDVI). Additionally, the spatial influence and the main interactions among the influential factors of the ULST are explored. Landsat-8 is the main source for data extraction and Tehran metropolitan area in Iran is selected as the study area. Results show that NDVI, LULC, and altitude explained 86% of the ULST °C variation. Unexpectedly, lower LST is observed near the major roads, which was due to the presence of vegetation along the streets and highways in Tehran. The results also revealed that variation in the ULST was influenced by the interaction between altitude – NDVI, altitude – road, and LULC – altitude. This indicates that the individual examination of the underlying factors of the ULST variation might be unilluminating. Performance evaluation of the four models reveals a close performance in which their R2 and Root Mean Square Error (RMSE) fall between 60.6–62.1% and 2.56–2.60 °C, respectively. However, the difference between the models is not statistically significant. This study evaluated the predictive performance of several models for ULST simulation and enhanced our understanding of the spatial influence and interactions among the underlying driving forces of the ULST variations.  相似文献   
282.
ABSTRACT

The Boein–Miandasht Complex (BMC) is a part of the Sanandaj–Sirjan metamorphic basement and is cut by gabbroic to granitoid bodies. These intrusive bodies comprise gabbro, gabbro–diorite associated with fine-grained, in part porphyritic leucocratic granitoids. Zircon U–Pb dating of representative gabbro–diorite samples yielded ages of 166.4 ± 1.8 Ma and 163.5 ± 6.3 Ma (Callovian, the latest stage of the Middle Jurassic). Mineral chemistry of the gabbro–diorites shows a homogeneous composition of the main minerals, main augite to diopside clinopyroxene and plagioclase (~An17–59). Moreover, low AlZ/TiO2 ratios of the clinopyroxene grains suggest that the rocks were generated in a within-plate tectonic regime. The SiO2 contents of the gabbro-diorite rocks are between 46.36 and 55.61 wt. %, Al2O3 ranges from 7.57 to 17.98 wt. %. The TiO2 contents vary from 1.18 to 3.65 wt. %, Fe2O3 from 7.41 to 12.95 wt. %, the MgO ranges between 3.49 and 15.75 wt. %, Na2O from 0.65 to 5.08 wt. % and K2O from 0.48 to 1.08 wt. %. These rocks mostly plot in the alkali-gabbro field. Compared to chondrite are characterized by enrichment of LREEs over HREE, enrichment of LIL elements (e.g. Rb, Sr and Ba) and obvious positive anomalies of Nb and Ti. Based on the chemical composition, and mineral composition, this complex was generated in an extensional tectonic regime by partial melting of the hot asthenospheric mantle which is not more consistent with previous models which have suggested for SaSZ evolution in before.  相似文献   
283.
The Sirstan granitoid (SG), comprising diorite and granodiorite, is located in the Shalair Valley area, in the northeastern part of Iraq within the Sanandaj–Sirjan Zone (SSZ) of the Zagros Orogenic Belt. The U–Pb zircon dating of the SG rocks has revealed a concordia age of 110 Ma, which is interpreted as the age of crystallization of this granitoid body during the Middle Cretaceous. The whole-rock Rb–Sr isochron data shows an age of 52.4 ± 9.4 Ma (MSWD = 1.7), which implies the reactivation of the granitoid body in the Early Eocene due to the collision between the Arabian and Iranian plates. These rocks show metaluminous affinity with low values of Nb, Ta and Ti compared to chondrite, suggesting the generation of these rocks over the subduction zone in an active continental margin regime. The SG rocks are hornblende-bearing I-type granitoids with microgranular mafic enclaves. The positive values of ?Nd (t = 110 Ma) (+0.1 to +2.7) and the low (87Sr/86Sr)i ratios (0.7044 to 0.7057) indicate that the magma source of the SG granitoids is a depleted subcontinental mantle. The chemical and isotope compositions show that the SG body originated from the metasomatic mantle without a major role for continental contamination. Our findings show that the granitoid bodies distributed in the SSZ were derived from the continuous Neo-Tethys subduction beneath the SSZ in Mesozoic times and that the SSZ was an active margin in the Middle Cretaceous.  相似文献   
284.
This study aimed to (1) investigate microrubbers (MRs) for the first time and identify microplastics (MPs) in street dust, (2) determine the physicochemical and mineralogical characteristics and morphology of dust particles, (3) understand the concentration and the possible source(s) of heavy metals/metalloids, (4) identify the chemical speciation and mobility potential of trace metals in urban street dusts, and (5) determine adverse health effects of street dust on children and adults living in the city of Bushehr in southwestern Iran. Generally, twenty four street dust samples were collected and analyzed. Calculated enrichment factors indicate high levels of contamination. Statistical analysis reveals that the two main sources of trace elements include road traffic emissions (Cu, Zn, Sb, Hg, Pb, Mo) and re-suspended soil particles (Al, Mn, Ni, Ti, Cd, Co). BCR sequential extraction results indicated that As, Zn, Cu, and Pb mainly occur in the exchangeable fraction and hence are highly bioavailable. X-ray powder diffraction analysis revealed the presence of calcite, dolomite, quartz, and magnetite. The size distribution of dust particles was also investigated using a scanning electron microscope (SEM), while elemental distribution was analyzed using an attached energy dispersive X-ray spectrometer (SEM–EDS) unit. Dust particles from heavy traffic areas are much finer compared with other investigated areas. MPs and MRs, mostly fibers and fragments, were detected in all samples [ranging from 210 to 1658 (MPs) and 44 to 782 (MRs) items/10 g dust] using fluorescence microscopy. The hazard index for As is higher than 10?4 for children and adults indicative of high risk. According to the calculated potential ecological risk index, Hg indicated moderate ecological risk in the street dust of the study area.  相似文献   
285.
Because of economic and technical limitations, measuring solar energy received at ground level (R s ) isn’t possible in all parts of the country, and in only 12% of synoptic stations is this parameter measured and recorded. Thus, it should be estimated and modeled spatially based on other climatic variables using mathematical methods. In this research, many attempts have been made to introduce an air temperature-based model for Rs estimation, and then, based on the output of the mentioned models, several geostatistical methods have been tested, and finally an elegant spatial model is proposed for (Rs) zoning in Iran. In this regard, the relationships between the measured amounts of monthly solar radiation and other climatic parameters, such as a monthly average, maximum and minimum temperature, precipitation, relative humidity, and the number of sunny hours during the period 1970–2010, are examined and modeled. It was revealed that based on the linear relationship between the monthly average air temperatures and solar radiation values recorded in each of the stations, that the best-fit linear model, with R 2  = 0.822, MAE = 1.81, RMSE = 2.51%, and MAPE = 10.08, can be introduced for Rs estimation. Then, using the outputs of the proposed model, the amounts of (R s ) are estimated in another 171 meteorological stations (a total of 192 stations), and eight geostatistical methods (IDW, GPI, RBF, LPI, OK, SK, UK, and EBK) were investigated for zoning. Comparing the resulting variograms showed that in addition to proof of spatial correlation between solar radiation data, they can be applied for modeling changes in various directions. Analyzing the ratio of the nugget effect on the roof of the variograms showed that the Gaussian model with the lowest ratio (Co/Co + C = 0.883) and (R 2  = 0.972), could model the highest correlation between the data and, therefore, it was used for data interpolation. To select the best geostatistical model, R2, MAE, and RMSE were used. On this basis, it was found that the RBF method with R 2  = 0.904, MAE = 3.02, RMSE = 0.39% is the most effective. Also, the IDW method with R 2  = 0.90, MAE = 3.08, RMSE = 0.391%, compared to other methods is the most effective. In addition, for data validation, correlations between observed and estimated values of solar radiation were studied and found R 2  = 0.86.  相似文献   
286.
An intraplate earthquake doublet, with 11-min delay between the events, devastated the city of Varzeghan in northwestern Iran on August 11, 2012. The first Mw 6.5 strike-slip earthquake, which occurred after more than 200 years of low seismicity, was followed by an Mw 6.4 oblique thrust event at an epicentral separation of about 6 km. While the first event can be associated with a distinct surface rupture, the absence of a surface fault trace and no clear aftershock signature makes it challenging to identify the fault plane of the second event. We use teleseismic body wave inversion to deduce the slip distribution in the first event. Using both P and SH waves stabilize the inversion and we further constrain the result with the surface rupture extent and the aftershock distribution. The obtained slip pattern shows two distinct slip patches with dissimilar slip directions where aftershocks avoid high-slip areas. Using the estimated slip for the first event, we calculate the induced Coulomb stress change on the nodal planes of the second event and find a preference for higher Coulomb stress on the N-S nodal plane. Assuming a simple slip model for the second event, we estimate the combined Coulomb stress changes from the two events on the focal planes of the largest aftershocks. We find that 90% of the aftershocks show increased Coulomb stress on one of their nodal planes when the N-S plane of the second event is assumed to be the correct fault plane.  相似文献   
287.
In recent decades, increased extraction of groundwater for human and agriculture consumption has led to a substantial drop in groundwater level in large areas of across the world. Declining groundwater levels is a serious problem in itself and has multiple economic, social, cultural, political, security-related, and environmental externalities. The negative economic-environmental externalities of overextraction of groundwater in the Orzouiyeh plain in the Kerman Province, Iran, were evaluated using methods such as replacement cost, production function, market prices, shadow price, and the value of the input marginal product. After evaluating externalities, the Positive Mathematical Programming method was used to evaluate different water policies to reduce the consumption of groundwater. The total economic losses due to the externalities were calculated to equal 2.8 U.S. million dollars. The damages caused by environmental externalities were calculated to equal 436.1 U.S. million dollars. The results related to the positive planning model show that the best policy among different options, such as deficit irrigation policy or combined policies, involves implementation of pressurized irrigation systems.  相似文献   
288.
Quality, availability and consistency of the measured and interpreted well log data are essential in the seismic reservoir characterization methods, and seismic petrophysics is the recommended workflow to achieve data consistency between logs and seismic domains. This paper uses seismic petrophysics workflow to improve well logs and pore geometry interpretations for an oil carbonate reservoir in the Fahliyan Formation in the southwest of Iran. The petrophysical interpreted well logs, rock physics and well-to-seismic tie analysis are integrated into the proposed workflow. Our implementation incorporates revising petrophysical well log interpretations and updating pore geometry characteristics to obtain a better well-tie quality. We first propose an improved pore-type characterization approach based on both P- and S-wave velocities for quantifying pore geometry. Then, seismic logs are estimated accordingly, and the results are used in the well-to-seismic analysis. The quality of the well-tie is improved, furthermore, by iterating on the petrophysical interpreted well logs as well as the calculated pore geometries. For the intervals with high-quality data, our workflow improves the consistency between the results of measured and modelled seismic logs. For the intervals with problematic well logs, the application of our proposed workflow results in the successful replacement of the poor data and subsequently leads to an improved wavelet estimation and well-tie results. In both cases, a higher quantification of pore geometries is achieved, which in turn is confirmed by the core images and formation micro-imager analysis.  相似文献   
289.
On the basis of experiments carried out in flume with a wavy bed with vegetation cover, flow velocity, turbulence intensities and Reynolds stress distributions are investigated. The wavy bed was similar to dune in this study. The fixed artificial dunes were constructed over the bed and artificial vegetation put over them in a laboratory flume. An Acoustic Doppler Velocimeter and spatially-averaged method were applied to determine turbulent flow components and shear velocity. Results were compared with a gravel bedform. It was observed that vegetation cover influences considerably the flow structure and displays clearly the flow separation and reattachment point. The law of the wall was not valid within the vegetation cover, but it was fitted well to the zone above the vegetation cover within the inner layer. For a wavy bed having the same dimensions, shear velocity and friction factor over vegetation cover are 1.7 and 2.6 times of those for the gravel bedform, respectively. The results of laboratory study were compared with those of river study.  相似文献   
290.
Trend analysis of reference evapotranspiration (ET0), as a key factor in irrigation programming, has an important role in water resources management. Many parameters affect ET0 and their variations can change its values. In this paper, the effect of temporal variation of meteorological variables including wind speed, temperature, solar radiation and saturation vapor pressure deficit on temporal variations of ET0 was analyzed. Trend analysis of ET0 and its more effective meteorological parameters was accomplished in 30 synoptic stations which are located in Iran using Spearman’s Rho test. The multiple linear regressions were also used to determine the relationship between ET0 trend and the trend of its more effective parameters. Increasing and decreasing trends in ET0 were obtained at annual and seasonal scales. Many studied stations which had decreasing trend in the annual and seasonal periods have been located in the arid climates while all stations which have been located in humid and very-humid climates, had an increasing trend in annual and seasonal periods. The trend results in studied variables showed that annual and seasonal values of wind speed, temperature and saturation vapor pressure deficit decrease however the values of solar radiation increases in most studied stations. Multiple linear regressions results demonstrated that ET0 trend can be calculated by the trend of two more effective variables including wind speed and saturation vapor pressure deficit.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号