首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   179篇
  免费   4篇
  国内免费   2篇
测绘学   1篇
大气科学   21篇
地球物理   43篇
地质学   74篇
海洋学   10篇
天文学   22篇
综合类   1篇
自然地理   13篇
  2021年   2篇
  2020年   5篇
  2019年   4篇
  2018年   2篇
  2017年   2篇
  2016年   6篇
  2015年   2篇
  2014年   7篇
  2013年   17篇
  2012年   9篇
  2011年   10篇
  2010年   10篇
  2009年   16篇
  2008年   13篇
  2007年   11篇
  2006年   5篇
  2005年   7篇
  2004年   4篇
  2003年   5篇
  2002年   4篇
  2001年   7篇
  2000年   2篇
  1999年   4篇
  1998年   3篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   3篇
  1990年   2篇
  1988年   2篇
  1987年   2篇
  1986年   3篇
  1984年   1篇
  1983年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1974年   1篇
  1973年   1篇
  1969年   1篇
排序方式: 共有185条查询结果,搜索用时 531 毫秒
81.
The applicability of equilibrium models for humic-bound transport of toxic or radioactive metals is affected by kinetic processes leading to an increasing inertness of metal–humic complexes. The chemical background is not yet understood. It is widely believed that bound metals undergo an in-diffusion process within the humic colloids, changing from weaker to stronger binding sites. This work is focussed on the competition effect of Al(III) on complexation of Tb(III) or Eu(III) as analogues of trivalent actinides. By using ion exchange and spectroscopic methods, their bound fractions were determined for solutions of Al and humic acid that had been pre-equilibrated for different periods of time. Whilst the amount of bound Al remained unchanged, its blocking effect was found to increase over a time frame of 2 days, which corresponds to the kinetics of the increase in complex inertness reported in most pertinent studies. Thus, the derived “diffusion theory” turned out to be inapplicable, since it cannot explain an increase in competition for the “initial” sites. A delayed degradation of polynuclear species (as found for Fe) does not occur. Consequently, the temporal changes must be based on structural rearrangements in the vicinity of bound Al, complicating the exchange or access. Time-dependent studies by laser fluorescence spectroscopy (steady-state and time-resolved) yielded evidence of substantial alterations, which were, however, immediately induced and did not show any significant trend on the time scale of interest, suggesting that the stabilisation process is based on comparatively moderate changes.  相似文献   
82.
83.
Fluid inclusions in quartz are known to modify their densities during shear deformation. Modifications of chemical composition are also suspected. However, such changes have not been experimentally demonstrated, their mechanisms remain unexplained, and no criteria are available to assess whether deformed inclusions preserve information on paleofluid properties. To address these issues, quartz crystals containing natural CO2–H2O–NaCl fluid inclusions have been experimentally subjected to compressive deviatoric stresses of 90–250 MPa at 700°C and ~600 MPa confining pressure. The resulting microcracking of the inclusions leads to expansion by up to 20%, producing low fluid densities that bear no relation to physical conditions outside the sample. Nevertheless, the chemical composition of the precursor inclusions is preserved. With time the microcracks heal and form swarms of tiny satellite inclusions with a wide range of densities, the highest reflecting the value of the maximum principle stress, σ 1. These new inclusions lose H2O via diffusion, thereby passively increasing their salt and gas contents, and triggering plastic deformation of the surrounding quartz via H2O-weakening. Using microstructural criteria to identify the characteristic types of modified inclusions, both the pre-deformation fluid composition and syn-deformation maximum stress on the host mineral can be derived from microthermometric analysis and thermodynamic modelling.  相似文献   
84.
Model calibration and history matching are important techniques to adapt simulation tools to real-world systems. When prediction uncertainty needs to be quantified, one has to use the respective statistical counterparts, e.g., Bayesian updating of model parameters and data assimilation. For complex and large-scale systems, however, even single forward deterministic simulations may require parallel high-performance computing. This often makes accurate brute-force and nonlinear statistical approaches infeasible. We propose an advanced framework for parameter inference or history matching based on the arbitrary polynomial chaos expansion (aPC) and strict Bayesian principles. Our framework consists of two main steps. In step 1, the original model is projected onto a mathematically optimal response surface via the aPC technique. The resulting response surface can be viewed as a reduced (surrogate) model. It captures the model’s dependence on all parameters relevant for history matching at high-order accuracy. Step 2 consists of matching the reduced model from step 1 to observation data via bootstrap filtering. Bootstrap filtering is a fully nonlinear and Bayesian statistical approach to the inverse problem in history matching. It allows to quantify post-calibration parameter and prediction uncertainty and is more accurate than ensemble Kalman filtering or linearized methods. Through this combination, we obtain a statistical method for history matching that is accurate, yet has a computational speed that is more than sufficient to be developed towards real-time application. We motivate and demonstrate our method on the problem of CO2 storage in geological formations, using a low-parametric homogeneous 3D benchmark problem. In a synthetic case study, we update the parameters of a CO2/brine multiphase model on monitored pressure data during CO2 injection.  相似文献   
85.
During the last decades, increasing exports of both dissolved organic carbon (DOC) and iron were observed from peat catchments in North America and Europe with potential consequences for water quality of streamwater and carbon storages of soils. As mobilisation and transport processes of DOC and iron in peat catchments are only partly understood, the purpose of this study was to elucidate these processes in an intensively monitored and studied system. Specifically, it was hypothesised that dissimilatory iron reduction in riparian peatland soils mobilises DOC initially adsorbed to iron minerals. During stormflow conditions, both DOC and iron will be transported into the stream network. Ferrous iron may be reoxidised at redox interfaces on its way to the stream, and subsequently, ferric iron could be transported together with DOC as complexes. To test these hypotheses, generalised additive models (GAMs) were applied to 14 years of weekly time series of discharge and concentrations of selected solutes measured in a German headwater stream called Lehstenbach. This stream drains a 4.19‐km2 forested mountain catchment; one third of which is covered by riparian peatland soils. We interpreted results of different types of GAM in the way that (a) iron reduction drove the mobilisation of DOC from peatland soils and that (b) both iron and DOC were transported as complexes after their joint mobilisation to and within the steam. It was speculated that low nitrate availability in the uppermost wetland soil layer, particularly during the growing season, promoted iron reduction and thus the mobilisation of DOC. However, the influence of nitrate on the DOC mobilisation remains relatively uncertain. This influence could be further investigated using methods similar to the GAM analysis conducted here for other catchments with long‐term data as well as detailed measurements of the relevant species in riparian wetland soils and the adjacent stream network.  相似文献   
86.
Lacustrine groundwater discharge (LGD) and the related water residence time are crucial parameters for quantifying lake matter budgets and assessing its vulnerability to contaminant input. Our approach utilizes the stable isotopes of water (δ18O, δ2H) and the radioisotope radon (222Rn) for determining long‐term average and short‐term snapshots in LGD. We conducted isotope balances for the 0.5‐km2 Lake Ammelshainer See (Germany) based on measurements of lake isotope inventories and groundwater composition accompanied by good quality and comprehensive long‐term meteorological and isotopic data (precipitation) from nearby monitoring stations. The results from the steady‐state annual isotope balances that rely on only two sampling campaigns are consistent for both δ18O and δ2H and suggested an overall long‐term average LGD rate that was used to infer the water residence time of the lake. These findings were supported by the good agreement of the simulated LGD‐driven annual cycles of δ18O and δ2H lake inventories with the observed lake isotope inventories. However, radon mass balances revealed lower values that might be the result of seasonal LGD variability. For obtaining further insights into possible seasonal variability of groundwater–lake interaction, stable water isotope and radon mass balances could be conducted more frequently (e.g., monthly) in order to use the derived groundwater discharge rates as input for time‐variant isotope balances.  相似文献   
87.
We present validation studies of MLS V2.2 and V3.3 water vapor(WV) and ozone profiles over the Tibetan Plateau(Naqu and Lhasa) and its adjacent region(Tengchong) respectively by using the balloon-borne Cryogenic Frost point Hygrometer and Electrochemical Concentration Cell ozonesonde. Coincident in situ measurements were selected to compare the MLS V2.2 and V3.3 WV and ozone profiles for understanding the applicability of the two version MLS products over the region. MLS V2.2 and V3.3 WV profiles respectively show their differences within ?2.2±15.7%(n=74) and 0.3±14.9%(n=75) in the stratosphere at and above 82.5 h Pa. Accordingly, at 100 h Pa, the altitude approaching the tropopuase height, differences are within 9.8± 46.0%(n=18) and 23.0±45.8%(n=17), and they are within 21.5±90.6%(n=104) and 6.0±83.4%(n=99) in upper troposphere. The differences of MLS ozone are within ?11.7±16.3%(n=135, V2.2) and 15.6±24.2%(n=305, V3.3) at and above 82.5 h Pa. At 100 h Pa, they are within ?3.5±54.4%(n=27) and ?8.7±41.6%(n=38), and within 18.0±79.1%(n=47) and 34.2±76.6%(n=160) in the upper troposphere. The relative difference of MLS WV and ozone profile has significant oscillation and scatter at upper troposphere and lower stratosphere partly due to the stronger gradients of WV and ozone concentrations here as well the linear interpolation of sonde data for the intercomparison. At and below 70 h Pa, the relative differences of MLS ozone are significantly larger over Lhasa during the Tibetan Plateau "ozone valley" season, which is also the Asian Summer Monsoon period. The MLS ozone differences over the three sites are similar in their vertical distributions during that period. A simple linear correlation analysis between MLS and sonde profiles indicates that the sensitivity of MLS profile products is related to concentrations at each pressure level. The MLS V3.3 product sensitivity is slightly improved for WV at and above 82.5 h Pa, whereas it is not obvious for ozone. The possible factors contributing to the differences of the MLS profile products of WV and ozone are discussed.  相似文献   
88.
Photoreduction of Hg in natural water plays a crucial role in the production of elemental Hg and its biogeochemical cycle. Solar irradiation and dissolved organic carbon (DOC) in water are considered to be the major factors inducing Hg photoreduction. We investigated Hg isotope fractionation during photoreduction and its relationship with Hg/DOC ratios. Both mass dependent (MDF) and mass independent fractionation (MIF) was observed. MIF enriched 199Hg and 201Hg in the reactant Hg(II) and thus, significantly enhanced the fractionation between odd and even isotopes. This direction of MIF is consistent with magnetic isotope effect as the underlying cause for the odd isotope enrichment in reactants. MIF also occurred in dark controls. But in the absence of light, 199Hg and 201Hg were enriched in the product Hg(0), which is not explained by magnetic isotope effects. We propose that nuclear volume effect dominated Hg isotope fractionation under these conditions. The reduction kinetics and isotope fractionation during photoreduction strongly correlated to Hg/DOC concentration ratios. Although different reduction kinetics and fractionation factors were measured at different Hg/DOC ratios, the same Hg/DOC ratios led to almost identical results. The degree of MIF for the two odd isotopes was also affected by Hg/DOC ratios. For this reason, it is critical to study Hg photoreduction at a near-natural Hg/DOC ratio in order to better simulate natural conditions. We suggest that differences in Hg-DOC binding, which varies with Hg/DOC ratios, may be responsible for the relationship between Hg/DOC ratios and Hg photoreduction.  相似文献   
89.
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号