首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   217篇
  免费   3篇
  国内免费   2篇
大气科学   7篇
地球物理   57篇
地质学   52篇
海洋学   38篇
天文学   52篇
综合类   1篇
自然地理   15篇
  2022年   1篇
  2021年   4篇
  2020年   2篇
  2019年   1篇
  2018年   5篇
  2017年   4篇
  2016年   7篇
  2015年   3篇
  2014年   8篇
  2013年   6篇
  2012年   9篇
  2011年   5篇
  2010年   7篇
  2009年   15篇
  2008年   11篇
  2007年   11篇
  2006年   11篇
  2005年   7篇
  2004年   5篇
  2003年   9篇
  2002年   6篇
  2001年   7篇
  2000年   2篇
  1999年   3篇
  1997年   3篇
  1996年   7篇
  1994年   6篇
  1993年   6篇
  1992年   4篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1985年   6篇
  1984年   6篇
  1983年   3篇
  1982年   4篇
  1981年   3篇
  1980年   4篇
  1979年   2篇
  1978年   2篇
  1977年   1篇
  1976年   3篇
  1975年   3篇
  1973年   1篇
  1972年   1篇
  1965年   1篇
排序方式: 共有222条查询结果,搜索用时 31 毫秒
171.
Assessments of the molecular and isotopic composition of hydrate-bound and dissolved gases in pore water were conducted during the multi-phase gas hydrate project (MHP-09) cruise VER09-03 to the southern basin of Lake Baikal in September 2009. To avoid changes in gas composition during core sampling and transport, various headspace methods were investigated aimed at preserving the dissolved gases in pore water. When distilled water was added to the sediment samples, the concentrations of carbon dioxide and oxygen decreased because of dissolution into the water and/or microbial consumption. When the headspace was not flushed with inert gases, trace levels of hydrogen and ethylene were detected. The findings suggest that best preparation is achieved by flushing the headspace with helium, and adding a saturated aqueous solution of sodium chloride. This improved headspace method served to examine the molecular and isotopic compositions of gas samples retrieved at several new sites in the southern basin. Methane was the major component, and the proportion of ethane ranged widely from 0.0009 to 1.67?mol% of the total hydrocarbon gases. The proportions of propane and higher hydrocarbons were small or less than their detection limits. The carbon isotope signatures suggest that microbial-sourced methane and ethane were dominant in the Peschanka study area, whereas ethane was of thermogenic origin at all other study sites in the southern basin of Lake Baikal.  相似文献   
172.
173.
We estimated the composition of two food sources for the cultured pearl oyster Pinctada fucata martensii using stable isotopes and stomach content analysis in the coastal areas of the Uwa Sea, Japan. The δ13C values of oysters (−17.5 to −16.8‰) were intermediate between that of particulate organic matter (POM, −20.2 to −19.1‰) and attached microalgae on pearl cages (−13.0‰). An isotope mixing model suggested that oysters were consuming 78% POM (mainly phytoplankton) and 22% attached microalgae. The attached microalgal composition of the stomach content showed a strong resemblance to the composition of that estimated through the isotope mixing model, suggesting preferential utilization of specific components is unlikely in this species. These results indicate that P. fucata martensii feed on a mixture of phytoplankton and attached microalgae, and that the attached microalgae on pearl cages can serve as an important additional food source.  相似文献   
174.
18O/16O ratios have been obtained for 134 whole-rocks and minerals from metamorphic and granitic rocks of the Yanai district in the Ryoke belt, Southwest Japan. The 18O/16O ratios of pelitic rocks of the marginal metamorphic zone decrease progressively with increasing metamorphic grade. In the gneiss-granite complex (zone of migmatite [1]), the most characteristic feature of the rocks is that oxygen isotopic homogenization proceeds on both local and regional scales in parallel with “granitization” or chemical homogenization. Granitic rocks of various origin are fairly uniform in isotopic composition with δ 18O of quartz of 12 to 14‰ (SMOW) and δ 18O of biotite of 7 to 9‰ and are about 3 to 4‰ enriched in 18O compared to other Cretaceous granites of non-metamorphic terranes in Japan. The high 18O/16O ratios of granitic rocks of this district were discussed in relation to the 18O-depletion in metasediments. Oxygen isotopic fractionations among coexisting minerals from various rock-types of the gneiss-granite complex indicate that these minerals were formed under near isotopic equilibrium at a temperature of about 600 to 700° C. Some abnormal fractionations of quartz-biotite pairs also were obtained for rocks which had undergone a progressive 18O-depletion or 18O-enrichment. This is due to high resistivity of quartz and contrastive susceptibility of biotite to isotopic exchange during metamorphism and “granitization”.  相似文献   
175.
The Blue Dot gold deposit, located in the Archean Amalia greenstone belt of South Africa, is hosted in an oxide (± carbonate) facies banded iron formation (BIF). It consists of three stratabound orebodies; Goudplaats, Abelskop, and Bothmasrust. The orebodies are flanked by quartz‐chlorite‐ferroan dolomite‐albite schist in the hanging wall and mafic (volcanic) schists in the footwall. Alteration minerals associated with the main hydrothermal stage in the BIF are dominated by quartz, ankerite‐dolomite series, siderite, chlorite, muscovite, sericite, hematite, pyrite, and minor amounts of chalcopyrite and arsenopyrite. This study investigates the characteristics of gold mineralization in the Amalia BIF based on ore textures, mineral‐chemical data and sulfur isotope analysis. Gold mineralization of the Blue Dot deposit is associated with quartz‐carbonate veins that crosscut the BIF layering. In contrast to previous works, petrographic evidence suggests that the gold mineralization is not solely attributed to replacement reactions between ore fluid and the magnetite or hematite in the host BIF because coarse hydrothermal pyrite grains do not show mutual replacement textures of the oxide minerals. Rather, the parallel‐bedded and generally chert‐hosted pyrites are in sharp contact with re‐crystallized euhedral to subhedral magnetite ± hematite grains, and the nature of their coexistence suggests that pyrite (and gold) precipitation was contemporaneous with magnetite–hematite re‐crystallization. The Fe/(Fe+Mg) ratio of the dolomite–ankerite series and chlorite decreased from veins through mineralized BIF and non‐mineralized BIF, in contrast to most Archean BIF‐hosted gold deposits. This is interpreted to be due to the effect of a high sulfur activity and increase in fO2 in a H2S‐dominant fluid during progressive fluid‐rock interaction. High sulfur activity of the hydrothermal fluid fixed pyrite in the BIF by consuming Fe2+ released into the chert layers and leaving the co‐precipitating carbonates and chlorites with less available ferrous iron content. Alternatively, the occurrence of hematite in the alteration assemblage of the host BIF caused a structural limitation in the assignment of Fe3+ in chlorite which favored the incorporation of magnesium (rather than ferric iron) in chlorite under increasing fO2 conditions, and is consistent with deposits hosted in hematite‐bearing rocks. The combined effects of reduction in sulfur contents due to sulfide precipitation and increasing fO2 during progressive fluid‐rock interactions are likely to be the principal factors to have caused gold deposition. Arsenopyrite–pyrite geothermometry indicated a temperature range of 300–350°C for the associated gold mineralization. The estimated δ34SΣS (= +1.8 to +2.5‰) and low base metal contents of the sulfide ore mineralogy are consistent with sulfides that have been sourced from magma or derived by the dissolution of magmatic sulfides from volcanic rocks during fluid migration.  相似文献   
176.
We examine the structure of turbulent airflow over ocean waves. Based on an analysis of wind and wave observations derived from a moored and floating Air–Sea Interaction Spar buoy during the Shoaling Waves Experiment field campaign, we show that the cospectra of momentum flux for wind–sea conditions follow established universal scaling laws. Under swell-dominant conditions, the wave boundary layer is extended and the universal cospectral scaling breaks down, as demonstrated previously. On the other hand, the use of peak wave frequency to reproduce the universal cospectra successfully explains the structure of the turbulent flow field. We quantify the wave-coherent component of the airflow and this clarifies how ocean waves affect momentum transfer through the wave boundary layer. In fact, the estimated wave-induced stresses for swell-dominant conditions explain the anomalous cospectral shapes observed near the peak wave frequency.  相似文献   
177.
We have established an iterative scheme to calculate with 15-digit accuracy the numerical values of Ambartsumian-Chandrasekhar’s \(H\)-functions for anisotropic scattering characterized by the four-term phase function: the method incorporates some advantageous features of the iterative procedure of Kawabata (Astrophys. Space Sci. 358:32, 2015) and the double-exponential integration formula (DE-formula) of Takahashi and Mori (Publ. Res. Inst. Math. Sci. Kyoto Univ. 9:721, 1974), which proved highly effective in Kawabata (Astrophys. Space Sci. 361:373, 2016). Actual calculations of the \(H\)-functions have been carried out employing 27 selected cases of the phase function, 56 values of the single scattering albedo \(\varpi_{0}\), and 36 values of an angular variable \(\mu(= \cos\theta)\), with \(\theta\) being the zenith angle specifying the direction of incidence and/or emergence of radiation. Partial results obtained for conservative isotropic scattering, Rayleigh scattering, and anisotropic scattering due to a full four-term phase function are presented. They indicate that it is important to simultaneously verify accuracy of the numerical values of the \(H\)-functions for \(\mu<0.05\), the domain often neglected in tabulation. As a sample application of the isotropic scattering \(H\)-function, an attempt is made in Appendix to simulate by iteratively solving the Ambartsumian equation the values of the plane and spherical albedos of a semi-infinite, homogeneous atmosphere calculated by Rogovtsov and Borovik (J. Quant. Spectrosc. Radiat. Transf. 183:128, 2016), who employed their analytical representations for these quantities and the single-term and two-term Henyey-Greenstein phase functions of appreciably high degrees of anisotropy. While our results are in satisfactory agreement with theirs, our procedure is in need of a faster algorithm to routinely deal with problems involving highly anisotropic phase functions giving rise to near-conservative scattering.  相似文献   
178.
In seismic data processing, serious problems could be caused by the existence of triplication and need to be treated properly for tomography and other inversion methods. The triplication in transversely isotropic medium with a vertical symmetry axis has been well studied and concluded that the triplicated traveltime only occurs for S wave and there is no triplication for P and converted PS waves since the P wave convexity slowness always compensates the S wave slowness concavity. Compared with the vertical symmetry axis model, the research of the triplication in transversely isotropic medium with a tilted symmetry axis is still keeping blank. In order to analyse the triplication for the converted wave in the tilted symmetry axis model, we examine the traveltime of the triplication from the curvature of averaged P and S wave slowness. Three models are defined and tested in the numerical examples to illustrate the behaviour of the tilted symmetry axis model for the triplicated traveltime with the change of the rotation angle. Since the orientation of an interface is related to the orientation of the symmetry axis, the triplicated traveltime is encountered for the converted wave in the tilted symmetry axis model assuming interfaces to be planar and horizontal. The triplicated region is influenced by the place and level of the concave curvature of the P and S wave slowness.  相似文献   
179.
This paper presents an investigation of the roughness effects in the turbulent boundary layer for asymmetric waves by using the baseline (BSL) kω model. This model is validated by a set of the experimental data with different wave non-linearity index, Ni (namely, Ni = 0.67, Ni = 0.60 and Ni = 0.58). It is further used to simulate asymmetric wave velocity flows with several values of the roughness parameter (am/ks) which increase gradually, namely from am/ks = 35 to am/ks = 963. The effect of the roughness tends to increase the turbulent kinetic energy and to decrease the mean velocity distribution in the inner boundary layer, whereas in the outer boundary layer, the roughness alters the turbulent kinetic energy and the mean velocity distribution is relatively unaffected. A new simple calculation method of bottom shear stress based on incorporating velocity and acceleration terms is proposed and applied into the calculation of the rate of bed-load transport induced by asymmetric waves. And further, the effect of bed roughness on the bottom shear stress and bed-load sediment transport under asymmetric waves is examined with the turbulent model, the newly proposed method, and the existing calculation method. It is found that the higher roughness elements increase the magnitude of bottom shear stress along a wave cycle and consequently, the potential net sediment transport rate. Moreover, the wave non-linearity also shows a big impact on the bottom shear stress and the net sediment transport.  相似文献   
180.
In order to discuss the relationship between the lower and higher frequency components of earthquake source spectra, we deal with impulse train model as source time function of earthquake, because spectral characteristics of source time function depend on occurrence times of impulse function which corresponds to small extent on the fault. Then, the spectral characteristics of source time function are obtained analytically and numerically from the stochastic viewpoints: namely, on one hand, the trend of impulse train dominates the frequency characteristics in low frequency range, and on the other hand, the fluctuation from the trend settles high frequency range. Furthermore, it is shown that the spectral properties of source time function can be determined using only two parameters which are number of impulses n and the probability density function of occurrence time of impulses fT(t).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号