全文获取类型
收费全文 | 189篇 |
免费 | 3篇 |
国内免费 | 2篇 |
专业分类
大气科学 | 8篇 |
地球物理 | 56篇 |
地质学 | 50篇 |
海洋学 | 40篇 |
天文学 | 25篇 |
综合类 | 2篇 |
自然地理 | 13篇 |
出版年
2021年 | 5篇 |
2020年 | 1篇 |
2019年 | 2篇 |
2018年 | 4篇 |
2017年 | 5篇 |
2016年 | 6篇 |
2015年 | 1篇 |
2014年 | 8篇 |
2013年 | 6篇 |
2012年 | 9篇 |
2011年 | 4篇 |
2010年 | 7篇 |
2009年 | 12篇 |
2008年 | 10篇 |
2007年 | 11篇 |
2006年 | 10篇 |
2005年 | 7篇 |
2004年 | 5篇 |
2003年 | 8篇 |
2002年 | 6篇 |
2001年 | 7篇 |
2000年 | 2篇 |
1999年 | 1篇 |
1997年 | 2篇 |
1996年 | 7篇 |
1994年 | 4篇 |
1993年 | 6篇 |
1992年 | 4篇 |
1990年 | 5篇 |
1989年 | 1篇 |
1988年 | 1篇 |
1986年 | 1篇 |
1985年 | 5篇 |
1984年 | 5篇 |
1983年 | 1篇 |
1982年 | 3篇 |
1981年 | 2篇 |
1980年 | 2篇 |
1979年 | 2篇 |
1978年 | 2篇 |
1977年 | 1篇 |
1975年 | 1篇 |
1972年 | 1篇 |
1965年 | 1篇 |
排序方式: 共有194条查询结果,搜索用时 15 毫秒
161.
This paper presents an investigation of the roughness effects in the turbulent boundary layer for asymmetric waves by using the baseline (BSL) k–ω model. This model is validated by a set of the experimental data with different wave non-linearity index, Ni (namely, Ni = 0.67, Ni = 0.60 and Ni = 0.58). It is further used to simulate asymmetric wave velocity flows with several values of the roughness parameter (am/ks) which increase gradually, namely from am/ks = 35 to am/ks = 963. The effect of the roughness tends to increase the turbulent kinetic energy and to decrease the mean velocity distribution in the inner boundary layer, whereas in the outer boundary layer, the roughness alters the turbulent kinetic energy and the mean velocity distribution is relatively unaffected. A new simple calculation method of bottom shear stress based on incorporating velocity and acceleration terms is proposed and applied into the calculation of the rate of bed-load transport induced by asymmetric waves. And further, the effect of bed roughness on the bottom shear stress and bed-load sediment transport under asymmetric waves is examined with the turbulent model, the newly proposed method, and the existing calculation method. It is found that the higher roughness elements increase the magnitude of bottom shear stress along a wave cycle and consequently, the potential net sediment transport rate. Moreover, the wave non-linearity also shows a big impact on the bottom shear stress and the net sediment transport. 相似文献
162.
Geochemical Process of Gas Hydrate Formation in the Nankai Trough Based on Chloride and Isotopic Anomalies in Interstitial Water 总被引:2,自引:0,他引:2
Abstract: Interstitial water expelled from gas hydrate-bearing and -free sediments in the Nankai Trough are analyzed in terms of Cl-, SO4 2 -, δ18 O and δD. The baselines for the Cl- concentration and δ18 O value are close to seawater values (530 mM and 0%), indicating that the interstitial water is of seawater origin. The δD values decrease with depth, implying isotopic exchange of hydrogen between upwelling biogenic methane depleted in D and interstitial water. The Cl- concentrations in gas hydrate-bearing sediments are anomalously low, while the δ18 O and δD values are both high, suggesting that the water forming these gas hydrates was poor in Cl- and enriched in 18 O and D during gas hydrate formation. Calculation of the gas hydrate saturations using Cl "and δ18 O anomalies gives results of up to 80 % in sand, and shows that the δ18 O baseline is not consistent with the Cl" baseline. The δ18 O baseline increases by +1% in gas hydrate-free clay and silt. This is considered to be caused by clustering of water molecules after gas hydrate dissociation in response to the upward migration of the base of gas hydrate stability, as indicated by the presence of a double bottom-simulating reflector at this site. The water clusters enriched in 18 O are responsible for the increase in the δ18 O baseline with normal Cl". The abrupt shallowing of the base of gas hydrate stability may induce the dissociation of gas hydrates and the accumulation of gases in the new stability zone, representing a geological process that increases gas hydrate saturation. 相似文献
163.
Hitoshi Yusa Masaki Akaogi Nagayoshi Sata Hiroshi Kojitani Ryo Yamamoto Yasuo Ohishi 《Physics and Chemistry of Minerals》2006,33(3):217-226
In-situ X-ray powder diffraction measurements conducted under high pressure confirmed the existence of an unquenchable orthorhombic perovskite in ZnGeO3. ZnGeO3 ilmenite transformed into perovskite at 30.0 GPa and 1300±150 K in a laser-heated diamond anvil cell. After releasing the pressure, the lithium niobate phase was recovered as a quenched product. The perovskite was also obtained by recompression of the lithium niobate phase at room temperature under a lower pressure than the equilibrium phase boundary of the ilmenite–perovskite transition. Bulk moduli of ilmenite, lithium niobate, and perovskite phases were calculated on the basis of the refined X-ray diffraction data. The structural relations among these phases are considered in terms of the rotation of GeO6 octahedra. A slight rotation of the octahedra plays an important role for the transition from lithium niobate to perovskite at ambient temperature. On the other hand, high temperature is needed to rearrange GeO6 octahedra in the ilmenite–perovskite transition. The correlation of quenchability with rotation angle of GeO6 octahedra for other germanate perovskites is also discussed. 相似文献
164.
Taiji Chida Yuichi Niibori Osamu Tochiyama Hitoshi Mimura Koichi Tanaka 《Applied Geochemistry》2007,22(12):2810-2816
Cementitious materials used for radioactive waste repository construction complicate the performance assessment of radioactive waste systems because the use of cement may greatly alter the pH (8–13) of groundwater and release constituents such as calcium ions. Under such conditions, it is important to clarify also the dynamic behavior of silica (silicic acid), in order to evaluate the alteration in the chemical and physical properties of the fractured layer or the host rock surrounding the repository. Since silica undergoes polymerization, precipitation or dissolution depending on the pH and/or temperature, the behavior of silica would be greatly complicated in the presence of other ions. This study is focused on the deposition rates of polysilicic acid and soluble silicic acid with up to 10−3 M Ca ions. In the experiment, Na2SiO3 solution (250 mL, pH > 10, 298 K) was poured into a polyethylene vessel containing amorphous silica powder (0.5 g), and a buffer solution, HNO3, and CaNO3 as Ca ions were sequentially added into the vessel. The pH of the solution was set to 8. The silica, initially in a soluble form at pH > 10 (1.4 × 10−2 M), became supersaturated and either deposited on the solid surface or changed into the polymeric form. Then the concentrations of both poly- and soluble silicic acid were monitored over a 40-day period. The decrease of polysilicic acid became slow with an increase in the concentration of Ca ions in the range of up to 10−3 M. In general, the addition of electrolytes to a supersaturated solution accelerates the aggregation and precipitation of polymeric species. However, the experimental result showed that polysilicic acid in the presence of Ca ions is apparently stable in solution, compared with that under a Ca-free condition. On the other hand, the concentration of soluble silicic acid in the presence of Ca ions immediately became metastable, that is, slightly higher than the solubility of soluble silicic acid. Its dynamic behavior was similar to that in the Ca-free condition. 相似文献
165.
Yasuo Hattori Chin-Hoh Moeng Hitoshi Suto Nobukazu Tanaka Hiromaru Hirakuchi 《Boundary-Layer Meteorology》2010,134(2):269-283
A wind-tunnel experiment was carried out to test a hypothesis that the turbulence characteristics in the near-neutral surface
layer are largely determined by detached eddies from above. The surrogate detached eddies were generated by using an active
turbulence grid installed at the front of the test section and the parameters of the grid were chosen such that the fully
developed logarithmic layer downstream consists of a turbulent flow that has similar normalized intensity to that typically
observed in the near-neutral atmospheric surface layer. The effects of the detached eddies on turbulence characteristics were
investigated by comparison with a second experiment without detached eddies. The influence of the detached eddies on the logarithmic
layer was mostly on the coherent structures; the logarithmic layer with the detached eddies revealed a multi-layer structure
similar to that found in the atmosphere where the lower part of the surface layer is dominated by sweep-like events and the
upper part by ejection-like events. Our experiments show that the mean velocity gradient and the Reynolds shear stress were,
however, not affected significantly by the detached eddies and hence the eddy viscosity. 相似文献
166.
Delphis F. Levia Kazuki Nanko Hiromasa Amasaki Thomas W. Giambelluca Norifumi Hotta Shin'ichi Iida Ryan G. Mudd Michael A. Nullet Naoki Sakai Yoshinori Shinohara Xinchao Sun Masakazu Suzuki Nobuaki Tanaka Chatchai Tantasirin Kozo Yamada 《水文研究》2019,33(12):1698-1708
Although we know that rainfall interception (the rain caught, stored, and evaporated from aboveground vegetative surfaces and ground litter) is affected by rain and throughfall drop size, what was unknown until now is the relative proportion of each throughfall type (free throughfall, splash throughfall, canopy drip) beneath coniferous and broadleaved trees. Based on a multinational data set of >120 million throughfall drops, we found that the type, number, and volume of throughfall drops are different between coniferous and broadleaved tree species, leaf states, and timing within rain events. Compared with leafed broadleaved trees, conifers had a lower percentage of canopy drip (51% vs. 69% with respect to total throughfall volume) and slightly smaller diameter splash throughfall and canopy drip. Canopy drip from leafless broadleaved trees consisted of fewer and smaller diameter drops (D50_DR, 50th cumulative drop volume percentile for canopy drip, of 2.24 mm) than leafed broadleaved trees (D50_DR of 4.32 mm). Canopy drip was much larger in diameter under woody drip points (D50_DR of 5.92 mm) than leafed broadleaved trees. Based on throughfall volume, the percentage of canopy drip was significantly different between conifers, leafed broadleaved trees, leafless broadleaved trees, and woody surface drip points (p ranged from <0.001 to 0.005). These findings are partly attributable to differences in canopy structure and plant surface characteristics between plant functional types and canopy state (leaf, leafless), among other factors. Hence, our results demonstrating the importance of drop‐size‐dependent partitioning between coniferous and broadleaved tree species could be useful to those requiring more detailed information on throughfall fluxes to the forest floor. 相似文献
167.
We estimate a rate of inner-core differential rotation from time variations of splitting functions of seven core modes of the Earth’s free oscillations excited by eight large earthquakes in a period of 1994–2003. The splitting functions and moment tensor elements are simultaneously determined for each core mode by a spectral fitting technique. The estimated moment tensor well agrees with Harvard CMT solution. The splitting functions are corrected for the effect of mantle heterogeneity using a 3D mantle velocity model. Inner-core rotation angle about the Earth’s spin axis is determined for each core mode as a function of event year by comparison of the corrected and reference splitting functions. Mean rotation rate of six core modes is estimated at 0.03±0.18° per year westward, and this value is insignificantly different from zero. Therefore, the inner core is not rotating at a significant rate relatively to the crust and mantle. 相似文献
168.
Millimeter-sized, spherical silicate grains abundant in chondritic meteorites, which are called as chondrules, are considered to be a strong evidence of the melting event of the dust particles in the protoplanetary disk. One of the most plausible scenarios is that the chondrule precursor dust particles are heated and melt in the high-velocity gas flow (shock-wave heating model). We developed the non-linear, time-dependent, and three-dimensional hydrodynamic simulation code for analyzing the dynamics of molten droplets exposed to the gas flow. We confirmed that our simulation results showed a good agreement in a linear regime with the linear solution analytically derived by Sekyia et al. [Sekyia, M., Uesugi, M., Nakamoto, T., 2003. Prog. Theor. Phys. 109, 717-728]. We found that the non-linear terms in the hydrodynamical equations neglected by Sekiya et al. [Sekiya, M., Uesugi, M., Nakamoto, T., 2003. Prog. Theor. Phys. 109, 717-728] can cause the cavitation by producing negative pressure in the droplets. We discussed that the fragmentation through the cavitation is a new mechanism to determine the upper limit of chondrule sizes. We also succeeded to reproduce the fragmentation of droplets when the gas ram pressure is stronger than the effect of the surface tension. Finally, we compared the deformation of droplets in the shock-wave heating with the measured data of chondrules and suggested the importance of other effects to deform droplets, for example, the rotation of droplets. We believe that our new code is a very powerful tool to investigate the hydrodynamics of molten droplets in the framework of the shock-wave heating model and has many potentials to be applied to various problems. 相似文献
169.
170.
The present study aims to develop a hybrid multi‐model using the soft computing approach. The model is a combination of a fuzzy logic, artificial neural network (ANN) and genetic algorithm (GA). While neural networks are low‐level computational structures that perform well dealing with raw data, fuzzy logic deal with reasoning on a higher level by using linguistic information acquired from domain experts. However, fuzzy systems lack the ability to learn and cannot adjust themselves to a new environment. Moreover, experts occasionally make mistakes and thus some rules used in a system may be false. A network type structure of the present hybrid model is a multi‐layer feed‐forward network, the main part is a fuzzy system based on the first‐order Sugeno fuzzy model with a fuzzification and a defuzzification processes. The consequent parameters are determined by least square method. The back‐propagation is applied to adjust weights of network. Then, the antecedent parameters of the membership function are updated accordingly by the gradient descent method. The GA was applied to select the fuzzy rule. The hybrid multi‐model was used to forecast the flood level at Chiang Mai (under the big flood 2005) and the Koriyama flood (2003) in Japan. The forecasting results are evaluated using standard global goodness of fit statistic, efficient index (EI), the root mean square error (RMSE) and the peak flood error. Moreover, the results are compared to the results of a neuro‐genetic model (NGO) and ANFIS model using the same input and output variables. It was found that the hybrid multi‐model can be used successfully with an efficiency index (EI) more than 0·95 (for Chiang Mai flood up to 12 h ahead forecasting) and more than 0·90 (for Koriyama flood up to 8 h ahead forecasting). In general, all of three models can predict the water level with satisfactory results. However, the hybrid model gave the best flood peak estimation among the three models. Therefore, the use of fuzzy rule base, which is selected by GA in the hybrid multi‐model helps to improve the accuracy of flood peak. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献