首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   126篇
  免费   3篇
  国内免费   7篇
测绘学   3篇
大气科学   1篇
地球物理   57篇
地质学   34篇
海洋学   11篇
天文学   3篇
综合类   6篇
自然地理   21篇
  2021年   1篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2016年   2篇
  2015年   5篇
  2014年   2篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2008年   2篇
  2007年   3篇
  2006年   2篇
  2005年   8篇
  2004年   3篇
  2003年   5篇
  2002年   4篇
  2001年   4篇
  2000年   13篇
  1999年   5篇
  1998年   3篇
  1997年   1篇
  1996年   1篇
  1995年   3篇
  1994年   4篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1990年   6篇
  1989年   3篇
  1988年   3篇
  1987年   3篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   3篇
  1982年   3篇
  1981年   4篇
  1980年   4篇
  1979年   2篇
  1978年   3篇
  1977年   1篇
  1976年   5篇
  1975年   1篇
  1974年   4篇
  1973年   1篇
  1972年   1篇
  1971年   2篇
排序方式: 共有136条查询结果,搜索用时 15 毫秒
131.
132.
Magnitude scale and quantification of earthquakes   总被引:1,自引:0,他引:1  
Despite various shortcomings, the earthquake magnitude scale is one of the most fundamental earthquake source parameters to be used for catalogs. Although use of a uniform scale is desirable, it is not always possible because of changes in instrumentation, the data reduction method and the magnitude formula, the station distribution, etc. As a result, various magnitude scales have been developed and are currently in use. Recent developments in seismometry and earthquake source theories provide more quantitative source parameters than the magnitude. In order to maintain continuity and uniformity of the data, it is important to relate these magnitude scales and the new parameters. In view of this importance, relations between different magnitude scales are examined with an emphasis on the difference in the period of the waves used for the magnitude determination. Use of several magnitude scales determined at different periods provides a convenient method for characterizing earthquakes. The moment magnitude can be used to quantify both shallow and deep earthquakes on the basis of wave energy radiated, and provides a uniform scheme.  相似文献   
133.
The vertical distributions of10Be and9Be at three locations in the Pacific (25°N, 170°E; 17°N, 118°W; 3°S, 117°W) are presented. The results show that both isotopes exhibit nutrient-like profiles. From the surface to the bottom, the increase for10Be is two- to threefold and that for9Be is about fivefold. While the inter-station variations in surface water concentrations may reach a factor of two, deep-water values tend to be much more uniform averaging about 2000 atoms/g for10Be and 30 pM for9Be. A similar situation applies to the10Be/9Be ratio; it varies approximately from 1 to 3 × 10−7 (atom/atom) at shallow depths but tends toward a value close to 1.1 × 10−7 in the deep ocean. The variation of10Be/9Be can be viewed as resulting from the fact that10Be in a given parcel of water consists of two components: recycled and primary. The recycled component is that part of10Be which has reached tracer equilibrium with9Be, as opposed to the primary component which, upon entering the sea from the atmosphere, has yet to equilibrate with9Be through particle cycling and mixing processes. It is estimated that 70% to nearly 100% of10Be at the three stations are being recycled, and the recycled beryllium bears an atomic ratio of10Be/9Be close to 1 × 10−7. The oceanic residence time of Be is of the order of 1000–4000 years, comparable to or slightly longer than the ocean mixing time.  相似文献   
134.
Mechanism of tsunami earthquakes   总被引:1,自引:0,他引:1  
  相似文献   
135.
Complexity of rupture propagation has an important bearing on the state of stress along the earthquake fault plane and on the prediction of strong ground motion in the near-field. By studying far-field body waveforms recorded by WWSSN long-period seismograms it has been possible to investigate the degree of complexity of several Turkish earthquakes. The results, which are obtained by matching synthetic P waveforms to observed data indicate that the July 22, 1967 Mudurnu Valley earthquake (Ms = 7.1) is a complex event which can be explained by the superposition of elementary sources with variable amplitudes and source time sequence history. In this regard, it is very similar to the February 4, 1976 Guatemala earthquake (Ms = 7.5). A comparison of these two events indicates that their source-time series ranges from 5 to ca. 20 s and, regardless of the total moment of the earthquake, the moment of the individual events is bounded at around 5 × 1026 dyn cm. The November 24, 1976 E. Turkey earthquake (Ms = 7.3), on the other hand, has a complexity which cannot be explained by such a simple model; in this respect, it may be more similar to the Tangshan, China, earthquake and as such, may involve significant thrust, normal or other complications to its faulting mechanism than the strike-slip mechanism of the P-wave first-motion data. The source time history for the 1967 Mudurnu Valley event is used to illustrate its significance in modeling strong ground motion in the near field. The complex source-time series of the 1967 event predicts greater amplitudes (2.5 larger) in strong ground motion than a uniform model scaled to the same size for a station 20 km from the fault. Such complexity is clearly important in understanding what strong ground motion to expect in the near-field of these and other continental strike-slip faults such as the San Andreas.  相似文献   
136.
We present a methodological approach to detect heated soil on ancient sites, using magnetic measurements. The method is based on changes in magnetic signals of soil by heating. The following three types of soil were used for testing the method: silty soil (SS), weathered volcanic ash (WVA, = loam) and fairly fresh volcanic ash (VA) called Odori tephra. On heating above 250–600°C, the magnetic susceptibility and remanent magnetization intensity increased for the SS and WVA samples, reflecting chemical alteration of magnetic minerals (from goethites to magnetites through hematites). The VA sample showed no susceptibility change suggesting the absence of goethites within it. On heating below 250°C, only the intensities of all the samples increased. This is possibly due to acquisition of thermal remanent magnetization. The largest change of the magnetic signals was identified for the SS sample and the smallest one was seen for the VA sample. Therefore, the in situ susceptibility measurement, which is the nondestructive and indirect method, seems to be effective to detect heated soil for sites of aqueous deposits as the SS. On the other hand, for sites of aeolian deposits as the WVA (loam) and VA, the intensity measurement of collected soils seems to be the most reliable method to detect evidence of heating. The degree of the magnetic stability (coercivity) against progressive alternating-field demagnetization was also an important parameter, indicating whether the investigated soils were heated or unheated. © 1999 John Wiley & Sons, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号