首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   207篇
  免费   14篇
  国内免费   3篇
测绘学   11篇
大气科学   8篇
地球物理   56篇
地质学   65篇
海洋学   50篇
天文学   8篇
综合类   5篇
自然地理   21篇
  2022年   3篇
  2021年   6篇
  2020年   6篇
  2019年   4篇
  2018年   5篇
  2017年   12篇
  2016年   6篇
  2015年   8篇
  2014年   9篇
  2013年   11篇
  2012年   6篇
  2011年   15篇
  2010年   12篇
  2009年   5篇
  2008年   10篇
  2007年   11篇
  2006年   12篇
  2005年   7篇
  2004年   11篇
  2003年   5篇
  2002年   7篇
  2001年   8篇
  2000年   5篇
  1999年   5篇
  1998年   5篇
  1997年   3篇
  1996年   2篇
  1995年   1篇
  1994年   5篇
  1993年   3篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
  1988年   2篇
  1984年   2篇
  1983年   1篇
  1980年   1篇
  1978年   2篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1972年   1篇
  1971年   1篇
排序方式: 共有224条查询结果,搜索用时 20 毫秒
141.
142.
New U–Pb ages of zircons from migmatitic pelitic gneisses in the Omuta district, northern Kyushu, southwest Japan are presented. Metamorphic zonation from the Suo metamorphic complex to the gneisses suggests that the protolith of the gneisses was the Suo metamorphic complex. The zircon ages reveal the following: (i) a transformation took place from the high‐P Suo metamorphic complex to a high‐T metamorphic complex that includes the migmatitic pelitic gneisses; (ii) the detrital zircon cores in the Suo pelitic rocks have two main age components (ca 1900–1800 Ma and 250 Ma), with some of the detrital zircon cores being supplied (being reworked) from a high‐grade metamorphic source; and (iii) one metamorphic zircon rim yields 105.1 ±5.3 Ma concordant age that represents the age of the high‐T metamorphism. The high‐P to high‐T transformation of metamorphic complexes implies the seaward shift of a volcanic arc or a landward shift of the metamorphic complex from a trench to the sides of a volcanic arc in an arc–trench system during the Early Cretaceous. The Omuta district is located on the same geographical trend as the Ryoke plutono‐metamorphic complex, and our estimated age of the high‐T metamorphism is similar to that of the Ryoke plutono‐metamorphism in the Yanai district of western Chugoku. Therefore, the high‐T metamorphic complex possibly represents the western extension of the Ryoke plutono‐metamorphic complex. The protolith of the metamorphic rocks of the Ryoke plutono‐metamorphic complex was the Jurassic accretionary complex of the inner zone of southwest Japan. The high‐P to high‐T transformation in the Omuta district also suggests that the geographic trend of the Jurassic accretionary complex was oblique to that of the mid‐Cretaceous high‐T metamorphic field.  相似文献   
143.
The Okinoshima Formation crops out on Okinoshima Island and comprises a thick sequence (> 200 m) of pyroclastic rocks and alternating beds of sandstone and mudstone. Because Okinoshima Island is located between Honshu and Tsushima Island, the Okinoshima Formation potentially provides an important record of volcanism during the opening of the Japan Sea in northwest Kyushu, as well as a record of the formation of the present Genkai Sea region. In consideration of the lack of previous geochronological work, dating (fission‐track and U–Pb) of igneous zircons extracted from the Okinoshima Formation were undertaken and studied the clay mineral alteration in the pyroclastic material in order to reveal its thermal history. These data are used to constrain the age of the Okinoshima Formation and the present Genkai Sea region. Our results show that no thermal event has reset the fission‐track age after deposition of the pyroclastic rocks, and that the Okinoshima Formation was deposited at 16.2 Ma. The present Genkai Sea region is a deep‐sea basin, and its formation at 16.2 Ma was accompanied by submarine volcanism and rapid subsidence that marked the climactic stage of Japan Sea formation. After 16 Ma, the tectonic setting of the present Genkai Sea region changed from one of extension (related to the formation of the Japan Sea) to one of compression, with uplift occurring under the influence of the clockwise rotation of southwest Japan. Consequently, after 16 Ma the present Genkai Sea region became isolated from the forming processes of the Japan Sea.  相似文献   
144.
Zircon U–Pb ages of two acidic tuff and two turbidite sandstone samples from the Nakanogawa Group, Hidaka Belt, were measured to estimate its depositional age and the development of the Hokkaido Central Belt, northeast Japan. In the northern unit, homogeneous zircons from pelagic acidic tuff from a basal horizon dated to 58–57 Ma, zircons from sandstone from the upper part of the unit dated to 56–54 Ma, and zircons from acidic tuff from the uppermost part dated to 60–56 Ma and 69–63 Ma. Both of the tuff U–Pb ages are significantly older than the youngest radiolarian fossil age (66–48 Ma). Therefore, the maximum depositional age of the turbidite facies in the northern unit is 58 Ma and the younger age limit, estimated from the fossil age, is 48 Ma. In the southern unit, homogeneous zircons from turbidite sandstone dated to 58–57 Ma. Thus the depositional age of this turbidite facies was interpreted to be 66–56 Ma from the fossil age, probably close to 57 Ma. Most of the zircon U–Pb ages from the Nakanogawa Group are younger than 80 Ma, with a major peak at 60 Ma. This result implies that around Hokkaido volcanic activity occurred mainly after 80 Ma. Older zircon ages (120–80 Ma, 180–140 Ma, 340–220 Ma, 1.9 Ga, 2.2 Ga, and 2.7 Ga) give information about the provenance of other rocks in the Hidaka Belt. It is inferred that the Nakanogawa Group comprises protoliths of the upper sequence of the Hidaka Metamorphic Zone, which therefore has the same depositional age as the Nakanogawa Group (66–48 Ma). The depositional ages of the lower sequence of the Hidaka Metamorphic Zone and the Nakanogawa Group are probably the same.  相似文献   
145.
We present a new LA–ICP–MS system for zircon fission‐track (FT) and U–Pb double dating, whereby a femtosecond laser combined with galvanometric optics simultaneously ablates multiple spots to measure average surface U contents. The U contents of zircon measured by LA–ICP–MS and standardized with the NIST SRM610 glass are comparable to those measured by the induced FT method, and have smaller analytical errors. LA–ICP–MS FT dating of seven zircon samples including three IUGS age standards is as accurate as the external detector method, but can give a higher‐precision age depending on the counting statistics of the U content measurement. Double dating of the IUGS age standards gives FT and U–Pb ages that are in agreement. A chip of the Nancy 91500 zircon has a homogeneous U content of 84 ppm, suggesting the possibility of using this zircon as a matrix‐matched U‐standard for FT dating. When using the Nancy 91500 zircon as a U‐standard, a zeta calibration value of 42–43 year cm2 for LA–ICP–MS FT dating is obtained. While this value is strictly valid only for the particular session, it can serve as a reference for other studies.  相似文献   
146.
The strength of mixing due to turbulence in the Antarctic Slope Front (ASF) region was investigated using CTD (conductivity-temperature-depth profilers) observations and direct measurements of turbulence conducted off Adélie Land, East Antarctica along 140°E from the 12th–14th February, 2005. The strongest horizontal gradient of the ASF was located below 300 m depth near the 1000 m isobath. The turbulent measurements revealed that the energy dissipation rate frequently exceeded 10?8 Wkg?1 on the continental shelf and upper slope regions. Turbulent diffusivities near the shelf break were higher than 10?3 m2s?1. Near the ASF the average turbulent heat flux was 5.7 Wm?2 and 1.1 Wm?2 across the temperature minimum layer to 250 m and from 300 to 600 m, respectively. The distribution of the high dissipation rate was consistently explained by the characteristic curve of the M2 internal wave emanating from the shelf break and continental slope. The water mass observed in the ASF below 300 m in the continental slope comprised Modified Circumpolar Deep Water and low salinity Shelf Water originating from either the upper layer of the Adélie Depression or the Adélie Bank, and produced by boundary mixing near the shelf break.  相似文献   
147.
博斯腾湖的咸化机理及湖水矿化度稳定性分析   总被引:6,自引:0,他引:6       下载免费PDF全文
以盐量平衡为基础,把影响湖水咸化的原因分解为水量、矿化度、水面蒸发等咸化因子,从物理机理上解析了各因子之间的相互关系。通过1960-1999年的逐年资料分析,提出盐分交换率概念,定量地阐明了不同时期各因子对湖水矿化度稳定性的影响。在博斯腾湖的不同情景下,推算了湖水矿化度的极限值;从理论上指出博斯腾湖属于微咸湖泊,其稳定矿化度为1.1 g/L,博斯腾湖的咸化原因可归因于人类水土开发活动和气候因素的综合影响。  相似文献   
148.
In this paper, three methods for estimating soil evaporation in a bare field were evaluated: evaporation ratio method (k ratio), complementary relationship and bulk equation. Micro-lysimeters were used to measure the actual evaporation for validation of the three methods. For the k ratio method, pan evaporation was used as the reference evaporation instead of the value obtained from the Penman–Monteith equation. This result is important for areas where meteorological data are unavailable. The results showed that, for daytime evaporation, the k ratio and bulk equation produced a good fit with the observation data, while the complementary relationship generated a larger deviation from the measured data. We recommend that the k ratio method and bulk equation could be used to calculate daytime soil evaporation with high accuracy when soil water content and pan evaporation data or meteorological data are available, while the complementary relationship could be used for a rough estimation when pan evaporation is available. All the methods could be applied to calculate cumulative evaporation.  相似文献   
149.
Warm winters and high precipitation in north-eastern Japan generate snow covers of more than three meters depth and densities of up to 0.55 g cm−3. Under these conditions, rain/snow ratio and snowmelt have increased significantly in the last decade under increasing warm winters. This study aims at understanding the effect of rain-on-snow and snowmelt on soil moisture under thick snow covers in mid-winter, taking into account that snowmelt in spring is an important source of water for forests and agriculture. The study combines three components of the Hydrosphere (precipitation, snow cover and soil moisture) in order to trace water mobility in winter, since soil temperatures remained positive in winter at nearly 0.3°C. The results showed that soil moisture increased after snowmelt and especially after rain-on-snow events in mid-winter 2018/2019. Rain-on-snow events were firstly buffered by fresh snow, increasing the snow water equivalent (SWE), followed by water soil infiltration once the water storage capacity of the snowpack was reached. The largest increase of soil moisture was 2.35 vol%. Early snowmelt increased soil moisture with rates between 0.02 and 0.035 vol% hr−1 while, rain-on-snow events infiltrated snow and soil faster than snowmelt and resulted in rates of up to 1.06 vol% hr−1. These results showed the strong connection of rain, snow and soil in winter and introduce possible hydrological scenarios in the forest ecosystems of the heavy snowfall regions of north-eastern Japan. Effects of rain-on-snow events and snowmelt on soil moisture were estimated for the period 2012–2018. Rain/snow ratio showed that only 30% of the total precipitation in the winter season 2011/2012 was rain events while it was 50% for the winter 2018/2019. Increasing climate warming and weakening of the Siberian winter monsoons will probably increase rain/snow ratio and the number of rain-on-snow events in the near future.  相似文献   
150.
Causes of large-scale landslides in the Lesser Himalaya of central Nepal   总被引:1,自引:0,他引:1  
Geologically and tectonically active Himalayan Range is characterized by highly elevated mountains and deep river valleys. Because of steep mountain slopes, and dynamic geological conditions, large-scale landslides are very common in Lesser and Higher Himalayan zones of Nepal Himalaya. Slopes along the major highways of central Nepal namely Prithvi Highway, Narayangadh-Mugling Road and Tribhuvan Highway are considered in this study of large-scale landslides. Geologically, the highways in consideration pass through crushed and jointed Kathmandu Nappe affected by numerous faults and folds. The relict large-scale landslides have been contributing to debris flows and slides along the highways. Most of the slope failures are mainly bechanced in geological formations consisting phyllite, schist and gneiss. Laboratory test on the soil samples collected from the failure zones and field investigation suggested significant hydrothermal alteration in the area. The substantial hydrothermal alteration in the Lesser Himalaya during advancement of the Main Central Thrust (MCT) and thereby clay mineralization in sliding zones of large-scale landslide are the main causes of large-scale landslides in the highways of central Nepal. This research also suggests that large-scale landslides are the major cause of slope failure during monsoon in the Lesser Himalaya of Nepal. Similarly, hydrothermal alteration is also significant in failure zone of the large-scale landslides. For the sustainable road maintenance in Nepal, it is of utmost importance to study the nature of sliding zones of large-scale landslides along the highways and their role to cause debris flows and slides during monsoon period.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号