全文获取类型
收费全文 | 93篇 |
免费 | 4篇 |
专业分类
测绘学 | 1篇 |
大气科学 | 3篇 |
地球物理 | 16篇 |
地质学 | 17篇 |
海洋学 | 34篇 |
天文学 | 14篇 |
综合类 | 3篇 |
自然地理 | 9篇 |
出版年
2021年 | 1篇 |
2020年 | 1篇 |
2019年 | 3篇 |
2018年 | 2篇 |
2016年 | 4篇 |
2015年 | 4篇 |
2014年 | 3篇 |
2013年 | 6篇 |
2012年 | 3篇 |
2011年 | 5篇 |
2010年 | 3篇 |
2009年 | 5篇 |
2008年 | 4篇 |
2007年 | 4篇 |
2006年 | 8篇 |
2005年 | 10篇 |
2004年 | 2篇 |
2003年 | 6篇 |
2001年 | 1篇 |
2000年 | 2篇 |
1999年 | 2篇 |
1998年 | 2篇 |
1997年 | 1篇 |
1994年 | 1篇 |
1992年 | 1篇 |
1989年 | 2篇 |
1985年 | 1篇 |
1983年 | 1篇 |
1980年 | 1篇 |
1979年 | 1篇 |
1978年 | 3篇 |
1977年 | 2篇 |
1975年 | 1篇 |
1970年 | 1篇 |
排序方式: 共有97条查询结果,搜索用时 0 毫秒
31.
It is shown that the coupling effect of the steady vortices and the Eulerian oscillatory flow yields the 8-shaped Lagrangean motion through which adjacent vortices intercommunicates, inducing water exchange between them. The water exchange coefficient is fairly large. This coupling effect is considered to play an important role in the water exchange across the narrow strait which is accompanied with a strong tidal current and a pair of tidal residual circulations. 相似文献
32.
Yuko Suto Sosuke Saito Ken-ichi Osada Hiroshi Takahashi Hideaki Motoyama Yoshiyuki Fujii Yoichi Tanaka 《Polar Science》2008,2(1):15-26
A next-generation drilling system, equipped with a thermal drilling device, is proposed for glacier ice. The system is designed to penetrate glacier ice via melting of the ice and continuously analyze melt-water in a contamination-free sonde. This new type of drilling system is expected to provide analysis data in less time and at less cost than existing systems. Because of the limited number of parameters that can be measured, the proposed system will not take the place of conventional drilling systems that are used to obtain ice cores; however, it will provide a useful method for quickly and simply investigating glacier ice.An electro-thermal drilling device is one of the most important elements needed to develop the proposed system. To estimate the thermal supply required to reach a target depth in a reasonable time, laboratory experiments were conducted using ice blocks and a small sonde equipped solely with heaters. Thermal calculations were then performed under a limited range of conditions. The experiments were undertaken to investigate the effects of the shape and material of the drill head and heater temperature on the rate of penetration into the ice. Additional thermal calculations were then performed based on the experimental results.According to the simple thermal calculations, if the thermal loss that occurs while heat is transferred from the heater to ice (in melting the ice) is assumed to be 50%, the total thermal supply required for heaters in the sonde and cable is as follows: (i) 4.8 kW (sonde) plus 0 W (cable) to penetrate to 300 m depth over 10 days into temperate glacier ice for which the temperature is 0 °C at all depths and to maintain a water layer along 300 m of cable; (ii) 10 kW (sonde) plus 19–32 kW (cable) to penetrate to 1000 m depth over 1 month into cold glacier ice for which the temperature is −25 °C at the surface and 0 °C at 1000 m depth and to maintain a water layer along 1000 m of cable; and (iii) 19 kW (sonde) plus 140–235 kW (cable) to penetrate to 3000 m depth over 2 months into an ice sheet for which the temperature is −55 °C at the surface and 0 °C at 3000 m depth and to maintain a water layer along 3000 m of cable. The thermal supply required for the cable is strongly affected by the thickness of the water layer, cable diameter, and the horizontal distance from the ice wall at which the ice temperature was maintained at its initial temperature. A large thermal supply is required to heat 3000 m of cable in an ice sheet (scenario (iii) above), but penetration into glacier ice (scenarios (i) and (ii) above) could be realistic with the use of a currently employed generator. 相似文献
33.
Transient changes in the permeability of fractures in systems driven far‐from‐equilibrium are described in terms of proxy roles of stress, temperature and chemistry. The combined effects of stress and temperature are accommodated in the response of asperity bridges where mineral mass is mobilized from the bridge to the surrounding fluid. Mass balance within the fluid accommodates mineral mass either removed from the flow system by precipitation or advection, or augmented by either dissolution or advection. Where the system is hydraulically closed and initially at equilibrium, reduction in aperture driven by the effects of applied stresses and temperatures will be augmented by precipitation on the fracture walls. Where the system is open, the initial drop in aperture may continue, and accelerate, where the influent fluid is oversaturated with respect to the equilibrium mineral concentration within the fluid, or may reverse, if undersaturated. This simple zero‐dimensional model is capable of representing the intricate behavior observed in experiments where the feasibility of fracture sealing concurrent with net dissolution is observed. This zero‐order model is developed as a constitutive model capable of representing key aspects of changes in the transport parameters of the continuum response of fractured media to changes in stress, temperature and chemistry. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
34.
Goro Komatsu Sergei G. Arzhannikov Alan R. Gillespie Raymond M. Burke Hideaki Miyamoto Victor R. Baker 《Geomorphology》2009,104(3-4):143-164
A suite of geomorphological and sedimentological features in the catchment of the upper Yenisei River in the Sayan mountains of southern Siberia testifies to the occurrence of cataclysmic floods that flowed down the river. Evidence of large-scale high-energy flood events includes: 1) gravel dunes, up to a few meters high and spaced 50 to 80 m apart, in the Kyzyl Basin 2) landforms such as hanging valleys and paleochannels and 3) flood sediments in a tributary valley. The origins of the Yenisei floods were likely diverse due to complex hydrological processes operating in the Sayan mountains. The possibilities include failures of multiple, variably impounded (ice, sedimentary, tectonic scarp, and lava flow dams) paleolakes in the two large intermontane basins of Darkhadyn Khotgor and Todza, and other minor basins, in the upper Yenisei River catchment. Dating techniques applied to the paleolakes in the Darkhadyn Khotgor and Todza basins revealed their formation during various periods in the middle–late Pleistocene and Holocene. Flooding from the Darkhadyn Khotgor appears to explain many of the inferred flood features, although contributions by flooding from other paleolake basins cannot be ruled out. Computer simulation of the flooding caused by a Darkhadyn Khotgor paleolake ice-dam failure indicates a probable peak discharge of 3.5 × 106 m3 s− 1, approximately one-fifth that of the floods that formed the Channeled Scabland in the U.S.A. Many of the outburst events probably occurred in the late Quaternary, but earlier floods could also have occurred. 相似文献
35.
Several numerical experiments were carried out on the formation of water masses and their fronts such as observed in the Kii Channel in winter. Such water masses and fronts may caused by density-induced current system. The phenomenon is assumed to take place in the vertical two-dimensional plane not involving the effect of the earth's rotation. The linear momentum equation and the diffusion-advection equations of salinity and temperature are integrated with respect to time under a vertically hydrostatic condition. The result is that two rolls which correspond to the onshore water mass and the offshore water mass are formed with an accompanying front between them. The apparent diffusion coefficient reaches a relatively great amount inside the water masses and drops down to the eddy diffusivity level at the front. The dependence of the synoptic distributions of the temperature and salinity on several parameters is also examined. Finally another experiment is carried out involving the effect of the earth's rotation, which results in a rather different distribution pattern from that of the non-rotating model. 相似文献
36.
A criterion for the stability of plankton patchiness is developed using a Liapunov function. Plankton growth, advection and diffusion in a closed area are considered. A critical length scale for the stability does not exist but a more common criterion which contains the growth rateα, diffusion coefficientA l and arbitrary function of growthf can be introduced in an integral form. 相似文献
37.
38.
Effects of deposit feeder Stichopus japonicus on algal bloom and organic matter contents of bottom sediments of the enclosed sea 总被引:4,自引:0,他引:4
Michio K Kengo K Yasunori K Hitoshi M Takayuki Y Hideaki Y Hiroshi S 《Marine pollution bulletin》2003,47(1-6):118-125
Algae growing in an enclosed sea may inhibit eutrophication because they absorb nutrients in the water. However, dead algae often cause anaerobic conditions in the water just above and on sediment after they are deposited on the bottom. We found that Stichopus japonicus inhibited the anaerobic processes coupling water sulfite production in sediment. The present study investigates whether S. japonicus inhibits algal flourish and influences sediment properties such as organic matter contents. Aquarium experiments were carried out at Komatsushima port in Tokushima Prefecture, western Japan. The aquaria used in the experiments were supplied with water directly from the adjacent sea (6 L/min), laid with sand of 10 cm depths, and lighted at 12 h intervals. Six aquaria each containing a sea cucumber from Komatsushima port and six aquaria without any were used in the experiments. Water temperature ranged between 9 and 15 degrees C during December 2000 and April 2001. Salinity ranged between 32 per thousand and 34 per thousand. Algae began to cover the bottom of the aquaria without S. japonicus after 2 weeks, whereas no growth was evident in the aquaria containing sea cucumbers. Chlorophyll a concentration in the surface sediment of the aquaria with S. japonicus (6.1+/-3.6 microg/g, mean S.D.+/-standard deviation) was significantly lower than that without it (60+/-17 microg/g, U-test, p<0.05). Phaeophytin concentration in the surface sediment of the aquaria with S. japonicus (0.9+/-0.09 microg/g) was also significantly lower than that without it (4.5+/-1.0 microg/g, U-test, p<0.05). TOC concentration in the surface sediment of the aquaria with S. japonicus (2.6+/-1.3 microg/g) was slightly lower than that without it (4.0+/-1.2 microg/g). These results showed that algal biomass and organic matter concentration of the bottom were decreased in the presence of S. japonicus. Therefore, S. japonicus inhibits algal bloom and decrease the contents of organic matter deposited on the bottom of enclosed sea areas. 相似文献
39.
A numerical model is presented to describe the evolution of fracture aperture (and related permeability) mediated by the competing chemical processes of pressure solution and free‐face dissolution/precipitation; pressure (dis)solution and precipitation effect net‐reduction in aperture and free‐face dissolution effects net‐increase. These processes are incorporated to examine coupled thermo‐hydro‐mechano‐chemo responses during a flow‐through experiment, and applied to reckon the effect of forced fluid injection within rock fractures at geothermal and petroleum sites. The model accommodates advection‐dominant transport systems by employing the Lagrangian–Eulerian method. This enables changes in aperture and solute concentration within a fracture to be followed with time for arbitrary driving effective stresses, fluid and rock temperatures, and fluid flow rates. This allows a systematic evaluation of evolving linked mechanical and chemical processes. Changes in fracture aperture and solute concentration tracked within a well‐constrained flow‐through test completed on a natural fracture in novaculite (Earth Planet. Sci. Lett. 2006, in press) are compared with the distributed parameter model. These results show relatively good agreement, excepting an enigmatic abrupt reduction in fracture aperture in the early experimental period, suggesting that other mechanisms such as mechanical creep and clogging induced by unanticipated local precipitation need to be quantified and incorporated. The model is applied to examine the evolution in fracture permeability for different inlet conditions, including localized (rather than distributed) injection. Predictions show the evolution of preferential flow paths driven by dissolution, and also define the sense of permeability evolution at field scale. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献
40.