首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   209篇
  免费   3篇
  国内免费   1篇
测绘学   1篇
大气科学   29篇
地球物理   20篇
地质学   66篇
海洋学   19篇
天文学   69篇
自然地理   9篇
  2020年   2篇
  2018年   2篇
  2017年   3篇
  2016年   3篇
  2015年   2篇
  2014年   2篇
  2013年   9篇
  2012年   6篇
  2011年   10篇
  2010年   13篇
  2009年   10篇
  2008年   7篇
  2007年   4篇
  2006年   10篇
  2005年   3篇
  2004年   8篇
  2003年   15篇
  2002年   2篇
  2001年   8篇
  2000年   4篇
  1999年   5篇
  1998年   2篇
  1997年   8篇
  1995年   3篇
  1993年   2篇
  1991年   2篇
  1989年   6篇
  1988年   3篇
  1987年   2篇
  1986年   8篇
  1985年   2篇
  1984年   3篇
  1983年   3篇
  1982年   5篇
  1978年   1篇
  1977年   4篇
  1975年   1篇
  1970年   3篇
  1967年   2篇
  1964年   1篇
  1962年   1篇
  1959年   1篇
  1958年   1篇
  1955年   1篇
  1951年   1篇
  1914年   2篇
  1913年   2篇
  1912年   4篇
  1911年   1篇
  1910年   1篇
排序方式: 共有213条查询结果,搜索用时 31 毫秒
171.
172.
We study the influence of synoptic scale atmospheric circulation on extreme daily precipitation across the United Kingdom, using observed time series from 689 rain gauges. To this end we employ a statistical model, that uses airflow strength, direction and vorticity as predictors for the generalised extreme value distribution of monthly precipitation maxima. The inferred relationships are connected with the dominant westerly flow, the orography, and the moisture supply from surrounding seas. We aggregated the results for individual rain gauges to regional scales to investigate the temporal variability of extreme precipitation. Airflow explains a significant fraction of the variability on subannual to decadal time scales. A large fraction of the especially heavy winter precipitation during the 1980s and 1990s in north Scotland can be attributed to a prevailing positive phase of the North Atlantic Oscillation. Our statistical model can be used for statistical downscaling and to validate regional climate model output.  相似文献   
173.
174.
Abstract. Silicate grains in space have attracted recently a wide interest of astrophysicists due to the increasing amount and quality of observational data, especially thanks to the results obtained by the Infrared Space Observatory. The observations have shown that the presence of silicates is ubiquitous in space and that their properties vary with environmental characteristics. Silicates, together with carbon, are the principal components of solid matter in space. Since their formation, silicate grains cross many environments characterised by different physical and chemical conditions which can induce changes to their nature. Moreover, the transformations experienced in the interplay of silicate grains and the medium where they are dipped, are part of a series of processes which are the subject of possible changes in the nature of the space environment itself. Then, chemical and physical changes of silicate grains during their life play a key role in the chemical evolution of the entire Galaxy. The knowledge of silicate properties related to the conditions where they are found in space is strictly related to the study in the laboratory of the possible formation and transformation mechanisms they experience. The application of production and processing methods, capable to reproduce actual space conditions, together with the use of analytical techniques to investigate the nature of the material samples, form a subject of a complex laboratory experimental approach directed to the understanding of cosmic matter. The goal of the present paper is to review the experimental methods applied in various laboratories to the simulation and characterisation of cosmic silicate analogues. The paper describes also laboratory studies of the chemical reactions undergone and induced by silicate grains. The comparison of available laboratory results with observational data shows the essential constraints imposed by astronomical observations and, at the same time, indicates the most puzzling problems that deserve particular attention for the future. The outstanding open problems are reported and discussed. The final purpose of this paper is to provide an overview of the present stage of knowledge about silicates in space and to provide to the reader some indication of the future developments in the field. Received 25 April 2002 / Published online 14 November 2002 Send offprint requests to: L. Colangeli e–mail: colangeli@na.astro.it  相似文献   
175.
176.
We study the influence and structure of the magnetic field in the early phases of low-mass star formation using polarization maps of Bok globules at a wavelength of 850 μm, obtained with the Submillimeter Common-User Bolometer Array (SCUBA) at the James Clerk Maxwell Telescope (JCMT). We discuss observations of the following sources: CB 26—a small globule with a nearly dispersed dense core and a young and large circumstellar disk, CB 54—a large globule with a massive dense core and a deeply embedded young stellar cluster, and B 335, CB 230, and CB 244—three nearby, relatively isolated small globules with low-mass protostellar cores. We find strongly aligned polarization vectors in the case of CB 26, B 335, and CB 230, whereas the vector orientations in the case of CB 54 and CB 244 are more or less randomly distributed. The degree of polarization, amounting to several percent, was found to decrease toward the center in each source. Assuming dichroic emission by aligned non-spherical grains as the polarization mechanism, where the magnetic field plays a role in the alignment process, we derive magnetic field strengths and structures from the observed polarization patterns. We compare the magnetic field topology with the morphology and outflow directions of the globules. In the Class 0 sources B 335, CB 230, and CB 244, the magnetic field is oriented almost perpendicular to the ouflow direction. In contrast, the inclination between outflow axis and magnetic field direction is much more moderate (36°) in the more evolved Class I source CB26.  相似文献   
177.
178.
179.
We carry out 2.5D MHD simulations to study the interaction between a dipolar magnetic field of a T Tauri Star, a circumstellar accretion disk, and the halo above the disk. The initial disk is the result of 1D radiation hydrodynamics computations with opacities appropriate for low temperatures. The gas is assumed resistive, and inside the disk accretion is driven by a Shakura–Sunyaev-type eddy viscosity. Magnetocentrifugal forces due to the rotational shear between the star and the Keplerian disk cause the magnetic field to be stretched outwards and part of the field lines are opened. For a solar-mass central star and an accretion rate of 10?8 solar masses per year a field strength of 100 G (measured on the surface of the star) launches a substantial outflow from the inner parts of the disk. For a field strength of 1 kG the inner parts of disk is disrupted. The truncation of the disk turns out to be temporary, but the magnetic field structure remains changed after the disk is rebuilt.  相似文献   
180.
This study presents 2D seismic reflection data, seismic velocity analysis, as well as geochemical and isotopic porewater compositions from Opouawe Bank on New Zealand’s Hikurangi subduction margin, providing evidence for essentially pure methane gas seepage. The combination of geochemical information and seismic reflection images is an effective way to investigate the nature of gas migration beneath the seafloor, and to distinguish between water advection and gas ascent. The maximum source depth of the methane that migrates to the seep sites on Opouawe Bank is 1,500–2,100 m below seafloor, generated by low-temperature degradation of organic matter via microbial CO2 reduction. Seismic velocity analysis enabled identifying a zone of gas accumulation underneath the base of gas hydrate stability (BGHS) below the bank. Besides structurally controlled gas migration along conduits, gas migration also takes place along dipping strata across the BGHS. Gas migration on Opouawe Bank is influenced by anticlinal focusing and by several focusing levels within the gas hydrate stability zone.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号