首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   162篇
  免费   7篇
  国内免费   1篇
测绘学   1篇
大气科学   4篇
地球物理   37篇
地质学   77篇
海洋学   32篇
天文学   10篇
综合类   1篇
自然地理   8篇
  2022年   1篇
  2021年   6篇
  2020年   4篇
  2018年   4篇
  2017年   6篇
  2016年   6篇
  2015年   2篇
  2014年   6篇
  2013年   6篇
  2012年   10篇
  2011年   5篇
  2010年   7篇
  2009年   5篇
  2008年   13篇
  2007年   9篇
  2006年   6篇
  2005年   6篇
  2004年   5篇
  2003年   11篇
  2002年   3篇
  2001年   3篇
  2000年   4篇
  1999年   3篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1994年   3篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1989年   1篇
  1987年   2篇
  1986年   2篇
  1985年   3篇
  1984年   3篇
  1982年   1篇
  1980年   1篇
  1978年   3篇
  1977年   1篇
  1975年   1篇
  1974年   2篇
  1972年   1篇
  1970年   1篇
  1969年   2篇
  1968年   2篇
排序方式: 共有170条查询结果,搜索用时 16 毫秒
91.
The Cretaceous accretionary complexes of the Idonnappu Zone in the Urakawa area are divided into five lithological units, four of which contain greenstone bodies. The Lower Cretaceous Naizawa Complex consists of two lithologic units. The Basaltic Unit (B‐Unit) is a large‐scale tectonic slab of greenstone, consisting of depleted tholeiite similar to that of the Lower Sorachi Ophiolite (basal forearc basin ophiolite) in the Sorachi‐Yezo Belt. The Mixed Unit of Naizawa Complex (MN‐Unit) contains oceanic island‐type alkaline greenstones which occur as slab‐like bodies and faulted blocks with tectonically dismembered trench‐fill sediments. Repeated alternations of the two units in the Naizawa Complex may have been formed by the collision of seamounts with forearc ophiolitic body (Lower Sorachi Ophiolite) in the trench. The Upper Cretaceous Horobetsugawa Complex structurally underlies the Naizawa Complex in its original configuration, and it also contains greenstone bodies. Greenstones in the MH‐Unit occur as blocks and sedimentary clasts in a clastic matrix, and exhibit depleted tholeiite and oceanic‐island alkaline basalt/tholeiite chemistry. This unit is interpreted as submarine slide and debris flow deposits. Greenstones in the PT‐Unit occur at the base of several chert‐clastic successions. Most of the greenstones are severely sheared and show normal‐type mid‐ocean ridge basalt composition. The PT‐Unit greenstones are considered to have been derived from abyssal basement peeled off during accretion. The different accretion mechanism of the greenstones in the Naizawa and Horobetsugawa complexes reflects temporal changes in subduction zone conditions. Seamount accretion and tectonic erosion were dominant in the Early Cretaceous, due to highly oblique subduction of the old oceanic crust and minimal sediment supply. Whereas, thick sediments with minor mid‐ocean ridge basalt and olistostrome accreted in the Late Cretaceous, due to near‐orthogonal subduction of young oceanic crust with voluminous sediment supply.  相似文献   
92.
East Asian summer monsoon simulation by a 20-km mesh AGCM   总被引:1,自引:0,他引:1  
East Asian summer monsoon climate simulated by a global 20-km mesh atmospheric general circulation model (AGCM) forced by the global sea surface temperature during the period 1979–1998 is investigated. In comparison with a lower resolution (180-km mesh) model experiment, it is revealed that the 20-km mesh AGCM shows the superiority in simulating orographic rainfall not only its location but also its amount. The Baiu frontal structure is also better simulated in the higher resolution model, which leads to stronger Baiu rainfall. The 20-km model also shows more intense extremes in precipitation. Interannual variability of June–August mean precipitation and seasonal march of the monsoon rain band are also investigated. This paper is a contribution to the AMIP-CMIP Diagnostic Sub-project on General Circulation Model Simulation of the East Asian Climate, coordinated by W.-C. Wang.  相似文献   
93.
Hydrate-bearing sediment cores were retrieved from recently discovered seepage sites located offshore Sakhalin Island in the Sea of Okhotsk. We obtained samples of natural gas hydrates and dissolved gas in pore water using a headspace gas method for determining their molecular and isotopic compositions. Molecular composition ratios C1/C2+ from all the seepage sites were in the range of 1,500–50,000, while δ13C and δD values of methane ranged from ?66.0 to ?63.2‰ VPDB and ?204.6 to ?196.7‰ VSMOW, respectively. These results indicate that the methane was produced by microbial reduction of CO2. δ13C values of ethane and propane (i.e., ?40.8 to ?27.4‰ VPDB and ?41.3 to ?30.6‰ VPDB, respectively) showed that small amounts of thermogenic gas were mixed with microbial methane. We also analyzed the isotopic difference between hydrate-bound and dissolved gases, and discovered that the magnitude by which the δD hydrate gas was smaller than that of dissolved gas was in the range 4.3–16.6‰, while there were no differences in δ13C values. Based on isotopic fractionation of guest gas during the formation of gas hydrate, we conclude that the current gas in the pore water is the source of the gas hydrate at the VNIIOkeangeologia and Giselle Flare sites, but not the source of the gas hydrate at the Hieroglyph and KOPRI sites.  相似文献   
94.
For decades, the scientific community has conducted essential background research and developed appropriate modeling tools in support of an ecosystem-based approach to natural resource management. Resource managers and the public, however, lack a clear roadmap for working with scientists to move beyond the traditional single-species approach. With current management processes so strongly focused on working in a species-by-species framework, there are entrenched cultural and institutional challenges to shifting those processes toward ecosystem-based management. We propose using the integrated ecosystem assessment process to both develop new management ideas for a particular ecosystem, and to help shift public policy processes and perceptions to embrace ecosystem approaches to management.  相似文献   
95.
The bottom currents in the Challenger Deep, the deepest in the world, were measured with super-deep current meters moored at 11°22′ N and 142°35′ E, where the depth is 10915 m. Three current meters were set at 9687 m, 10489 m and 10890 m at the station in the center of the Challenger Deep for 442 days from 1 August 1995 to 16 October 1996. Although rotor revolutions in 60 minutes of recording interval were zero for 37.5% of the time, the maximum current at the deepest layer of 10890 m was 8.1 cm s−1, being composed of tidal currents, inertia motion and long period variations. Two current meters were set at 6608 m and 7009 m at a station 24.9 km north of the center for 443 days from 31 July 1995 to 16 October 1996, and two current meters at 6214 m and 6615 m at a station 40.9 km south of the center for 441 days from 2 August 1995 to 16 October 1996. The mean flow at 7009 m depth at the northern station was 0.7 cm s−1 to 240°T, and that at 6615 m depth at the southern station was 0.5 cm s−1 to 267°T. A westward mean flow prevailed at the stations, and no cyclonic circulation with mean flows of the opposite directions was observed in the Mariana Trench at a longitude of 142°35′ E. Power spectra of daily mean currents showed three spectral peaks at periods of 100 days, 28–32 days and 14–15 days. The peak at 100 day period was common to the power spectra.  相似文献   
96.
Bacterial productivity (BP) and respiration (BR) were examined in relation to primary productivity (PP) for the first time in a shallow tropical ecosystem (Cochin Estuary), India. The degree of dependence of BP (6.3–199.7 μg C L−1 d−1) and BR (6.6–430.4 μg C L−1 d−1) on PP (2.1–608.0 μg C L−1 d−1) was found to be extremely weak. The BP/PP (0.05–8.5) and PP/BR (0.02–7.9) ratios widely varied in the estuary depending on the season and location. There was a seasonal shift in net pelagic production from autotrophy to heterotrophy due to terrestrial organic matter input through rivers which enhanced the bacterial heterotrophic activity and very high pCO2 (106–6001 μatm) levels. The heterotrophic zones were characterized by low PP but high bacterial production and respiration leading to oxygen undersaturation and exceptionally high pCO2. We propose that the CO2 supersaturation caused by increased bacterial respiration (in excess of PP) was a result of bacterial degradation of allochthonous organic matter. This indicates that sources other than planktonic compartment need to be explored to understand the C-cycling in this estuary. These results are of particular relevance to tropical ecosystems in general, where the bulk of world's river discharges occur.  相似文献   
97.
Abstract Thailand comprises two continental blocks: Sibumasu and Indochina. The clastic rocks of the Triassic Mae Sariang Group are distributed in the Mae Hong Son–Mae Sariang area, north‐west Thailand, which corresponds to the central part of Sibumasu. The clastic rocks yield abundant detrital chromian spinels, indicating a source of ultramafic/mafic rocks. The chemistry of the detrital chromian spinels suggests that they were derived from three different rock types: ocean‐floor peridotite, chromitite and intraplate basalt, and that ophiolitic rocks were exposed in the area, where there are no outcrops of them at present. Exposition of an ophiolitic complex denotes a suture zone or other tectonic boundary. The discovery of chromian spinels suggests that the Gondwana–Tethys divide is located along the Mae Yuam Fault zone. Both paleontological and tectonic aspects support this conclusion.  相似文献   
98.
Recent studies on mineralogy, geochronology, fluid inclusion and stable isotope (Pb, Os, S, C, O, Sr) characteristics were reviewed to determine constraints for genetic models of the Chilean manto‐type copper deposits. The Chilean manto‐type deposits are divided into the two geologic categories of the northern areas (Arica–Iquique, Tocopilla–Taltal) and the central areas (Copiapó, La Serena, Santiago). The former is distributed in the coastal range composed of Jurassic andesite‐dominated volcano‐sedimentary piles and younger plutonic intrusions, and yields chalcocite (‐digenite) and bornite as the principal hypogene copper sulfides. The latter is hosted mostly in Lower Cretaceous volcano‐sedimentary sequences, and has chalcopyrite‐rich mineral associations. The fluid inclusion data indicate that the primary copper mineralization was commonly generated in the temperature range 150–360°C under low‐pressure conditions near the boiling curve, mediated with relatively saline brines. Generally, homogeneous Pb and S isotope compositions for primary copper minerals imply direct magma source or leaching of igneous rocks. Pb and Os isotope data published for some deposits, however, suggest that ore‐forming metals were derived mainly from the volcano‐sedimentary host rocks. The noticeably negative isotope ratios of primary sulfide sulfur and hydrothermal calcite carbon of some central area deposits indicate influx of sedimentary rock components, and the high 87Sr/86Sr initial ratios of hydrothermal calcite from the Tocopilla–Taltal area deposits imply contribution of the contemporaneous seawater or marine carbonates. These isotopic constraints imply a formation mechanism in which the Chilean manto‐type copper deposits formed epigenetically in the process of hydrothermal interaction of non‐magmatic surface‐derived brine with the volcano‐sedimentary host rocks, which is inferred to have been induced by a deep‐seated plutonic complex as the possible heat source.  相似文献   
99.
The Lince–Estefanía stratabound copper deposit in the Michilla district is one of the most important deposits in the Coastal Cordillera of northern Chile and is one of the most representative of this type of deposit. Chalcocite and bornite characterize the main stage of hypogene copper sulfide mineralization. Rhenium and osmium isotopes are used here to constrain the age of hypogene mineralization and the source of osmium contained in these ore minerals. A Re–Os isochron yielded an age of 160±16 Ma (2σ), with an associated initial 187Os/188Os ratio of 1.06±0.09 (mean square of weighted deviates=1.8). This age is consistent with available geochronological data from volcanic rocks that host the mineralization and associated alteration phases. The high initial 187Os/188Os ratio indicates a lower crustal component for the source of Os and, by inference, the Cu sulfides that contain this Os. Late hematite occurs as an isolated phase or, more commonly, is associated with the chalcocite–bornite and supergene chalcocite–covellite associations. Analyses performed on pure hematite indicate a disturbance of the Re–Os system, and hence, this mineral phase is not useful as a Re–Os geochronometer.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号