首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26398篇
  免费   495篇
  国内免费   274篇
测绘学   638篇
大气科学   2046篇
地球物理   5747篇
地质学   9332篇
海洋学   2129篇
天文学   5522篇
综合类   40篇
自然地理   1713篇
  2020年   141篇
  2019年   137篇
  2018年   312篇
  2017年   279篇
  2016年   432篇
  2015年   313篇
  2014年   451篇
  2013年   1212篇
  2012年   535篇
  2011年   831篇
  2010年   673篇
  2009年   950篇
  2008年   882篇
  2007年   825篇
  2006年   863篇
  2005年   751篇
  2004年   778篇
  2003年   736篇
  2002年   753篇
  2001年   602篇
  2000年   619篇
  1999年   584篇
  1998年   571篇
  1997年   575篇
  1996年   480篇
  1995年   479篇
  1994年   451篇
  1993年   427篇
  1992年   379篇
  1991年   334篇
  1990年   393篇
  1989年   308篇
  1988年   348篇
  1987年   388篇
  1986年   337篇
  1985年   505篇
  1984年   543篇
  1983年   552篇
  1982年   440篇
  1981年   435篇
  1980年   449篇
  1979年   401篇
  1978年   413篇
  1977年   363篇
  1976年   389篇
  1975年   351篇
  1974年   390篇
  1973年   381篇
  1972年   241篇
  1971年   195篇
排序方式: 共有10000条查询结果,搜索用时 750 毫秒
941.
942.
943.
Fission‐track, U–Pb and Pb–Pb analyses of detrital heavy mineral populations in depositional basins and modern river sediments are widely used to infer the exhumational history of mountain belts. However, relatively few studies address the underlying assumption that detrital mineral populations provide an accurate representation of their entire source region. Implicit in this assumption is the idea that all units have equal potential to contribute heavy minerals in proportion to their exposure area in the source region. In reality, the detrital mineral population may be biased by variable concentrations of minerals in bedrock and differential erosion rates within the source region. This study evaluates the relative importance of these two variables by using mixing of U–Pb zircon ages to trace zircon populations from source units, through the fluvial system, and into the foreland. The first part of the study focuses on the Marsyandi drainage in central Nepal, using tributaries that drain single formations to define the U–Pb age distributions of individual units and using trunk river samples to evaluate the relative contributions from each lithology. Observed mixing proportions are compared with proportions predicted by a simple model incorporating lithologic exposure area and zircon concentration. The relative erosion rates that account for the discrepancy between the observed and predicted mixing proportions are then modelled and compared with independent erosional proxies. The study also compares U–Pb age distributions from four adjacent drainages spanning ~250 km along the Himalayan front using the Kolmogorov–Smirnov statistic and statistical estimates of the proportion of zircon derived from each upstream lithology. Results show that, along this broad swath of rugged mountains, the U–Pb age distributions are remarkably similar, thereby allowing data from more localized sources to be extrapolated along strike.  相似文献   
944.
945.
946.
From water to tillage erosion dominated landform evolution   总被引:3,自引:1,他引:3  
While water and wind erosion are still considered to be the dominant soil erosion processes on agricultural land, there is growing recognition that tillage erosion plays an important role in the redistribution of soil on agricultural land. In this study, we examined soil redistribution rates and patterns for an agricultural field in the Belgian loess belt. 137Cs derived soil erosion rates have been confronted with historical patterns of soil erosion based on soil profile truncation. This allowed an assessment of historical and contemporary landform evolution on agricultural land and its interpretation in relation to the dominant geomorphic process. The results clearly show that an important shift in the relative contribution of tillage and water erosion to total soil redistribution on agricultural land has occurred during recent decades. Historical soil redistribution is dominated by high losses on steep midslope positions and concavities as a result of water erosion, leading to landscape incision and steepening of the topography. In contrast, contemporary soil redistribution is dominated by high losses on convex upperslopes and infilling of slope and valley concavities as a result of tillage, resulting in topographic flattening. This shift must be attributed to the increased mechanization of agriculture during recent decades. This study shows that the typical topographical dependency of soil redistribution processes and their spatial interactions must be accounted for when assessing landform and soil profile evolution.  相似文献   
947.
948.
Calcite dendrite crystals are important but poorly understood components of calcite travertine that forms around many hot springs. The Lýsuhóll hot-spring deposits, located in western Iceland, are formed primarily of siliceous sinters that were precipitated around numerous springs that are now inactive. Calcite travertine formed around the vent and on the discharge apron of one of the springs at the northern edge of the area. The travertine is formed largely of two types (I and II) of complex calcite dendrite crystals, up to 1 cm high, that grew through the gradual addition of trilete sub-crystals. The morphology of the dendrite crystals was controlled by flow direction and the competition for growth space with neighbouring crystals. Densely crowded dendrites with limited branching characterize the rimstone dams whereas widely spaced dendrites with open branching are found in the pools. Many dendrite bushes in the pools nucleated around plant stems. Growth of the dendrite crystals was seasonal and incremental. Calcite precipitation was driven by rapid CO2 degassing of CO2-rich spring waters during the spring and summer. During winter, when snow covered the ground and temperatures were low, opal-A precipitated on the exposed surfaces of the dendrites. Segmentation of dendrite branches by discontinuities coated with opal-A and overgrowth development around sub-crystals resulted from this seasonal growth cycle. The calcite dendrite crystals in the Lýsuhóll travertine differ in morphology from those at other hot springs, such as those at Lake Bogoria, Kenya, and Waikite in New Zealand. Comparison with the calcite dendrite crystals found at those sites shows that dendrite morphology is site-specific and probably controlled by carbonate saturation levels that, in turn, are controlled by the rate of CO2 degassing and location in the spring outflow system.  相似文献   
949.
Velichko, A. A., Novenko, E. Y., Pisareva, V. V., Zelikson, E. M., Boettger, T. & Junge, F. W. 2005 (May): Vegetation and climate changes during the Eemian interglacial in Central and Eastern Europe: comparative analysis of pollen data. Boreas , Vol. 34, pp. 207–219. Oslo. ISSN 0300–9483.
The article discusses pollen data from Central and Eastern Europe and provides insight into the climate and vegetation dynamics throughout the Eemian interglacial (including preceding and succeeding transitional phases). Three sections with high resolution pollen records are presented. Comparison of the data indicates that the range of climatic and environmental changes increased from west to east, whereas the main phases of vegetation development appear to have been similar throughout the latitudinal belt. At the interglacial optimum, the vegetation in both Central and Eastern Europe was essentially homogeneous. An abrupt change marks the Saalian/Eemian boundary (transition from OIS 6 to OIS 5e), where environmental fluctuations were similar to those detected at the transition from the Weichselian to the Holocene (Allerød and Dryas 3). Transition from the Eemian to the Weichselian was gradual in the western part of the transect, with forest persisting. In the east, fluctuations of climate and vegetation were more dramatic; forest deteriorated and was replaced by cold open landscapes.  相似文献   
950.
The Neoproterozoic East African Orogen reflects closure of the Mozambique Ocean and collision of the Congo and Dharwar cratons. This palaeogeographical change and its environmental consequences are poorly understood, but new detrital zircon ages from Madagascar and published data from elsewhere provide evidence for multiple ocean basins and two-stage collision. We propose that central Madagascar rifted from the Congo Craton and crossed a Palaeomozambique Ocean to collide with the Dharwar Craton at c. 700 Ma, opening a Neomozambique Ocean in its wake. Closure of the Neomozambique Ocean at c. 600 Ma juxtaposed the Congo and Dharwar cratons and resulted in prolonged collisional orogenesis concluding at c. 500 Ma.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号