全文获取类型
收费全文 | 26993篇 |
免费 | 262篇 |
国内免费 | 96篇 |
专业分类
测绘学 | 640篇 |
大气科学 | 2071篇 |
地球物理 | 5783篇 |
地质学 | 9393篇 |
海洋学 | 2148篇 |
天文学 | 5551篇 |
综合类 | 45篇 |
自然地理 | 1720篇 |
出版年
2020年 | 158篇 |
2019年 | 154篇 |
2018年 | 312篇 |
2017年 | 282篇 |
2016年 | 438篇 |
2015年 | 319篇 |
2014年 | 454篇 |
2013年 | 1214篇 |
2012年 | 539篇 |
2011年 | 839篇 |
2010年 | 679篇 |
2009年 | 954篇 |
2008年 | 886篇 |
2007年 | 826篇 |
2006年 | 864篇 |
2005年 | 753篇 |
2004年 | 781篇 |
2003年 | 736篇 |
2002年 | 756篇 |
2001年 | 603篇 |
2000年 | 619篇 |
1999年 | 585篇 |
1998年 | 572篇 |
1997年 | 578篇 |
1996年 | 480篇 |
1995年 | 479篇 |
1994年 | 451篇 |
1993年 | 429篇 |
1992年 | 382篇 |
1991年 | 335篇 |
1990年 | 394篇 |
1989年 | 310篇 |
1988年 | 350篇 |
1987年 | 391篇 |
1986年 | 338篇 |
1985年 | 505篇 |
1984年 | 544篇 |
1983年 | 552篇 |
1982年 | 441篇 |
1981年 | 435篇 |
1980年 | 450篇 |
1979年 | 401篇 |
1978年 | 413篇 |
1977年 | 363篇 |
1976年 | 389篇 |
1975年 | 351篇 |
1974年 | 390篇 |
1973年 | 381篇 |
1972年 | 241篇 |
1971年 | 195篇 |
排序方式: 共有10000条查询结果,搜索用时 606 毫秒
901.
902.
W. R. Hartley A. Thiyagarajah M. B. Anderson M. W. Broxson S. E. Major S. I. Zell 《Marine environmental research》1998,46(1-5)
The purpose of this research was to evaluate the Japanese medaka (Oryzias latipes) as an ecotoxicological model for the rapid evaluation of environmental estrogens. A novel short-term (48-h) exposure to 17 β-estradiol is proposed in development of a positive control for disruption of gonadal development. Recently hatched medaka fry (30 fry per dose group) with undifferentiated gonads were exposed to 4.0, 29.4, and 115.6 μg/liter of 17 β-estradiol (acetone carrier) for 48 h in a water bath at 25 °C. The fry were then grown-out in spring water for 2 weeks, killed, and processed for histological evaluation. High lethality was encountered during the grow-out period in the 115.6 μg/liter dose group. Fry in the spring water and acetone (carrier) control groups developed into females or males. Fry exposed to 17 β-estradiol developed primarily into females or had testis-ova. 相似文献
903.
W. Krauß 《Ocean Dynamics》1965,18(5):193-210
Zusammenfassung Entsprechend der Reynoldsschen Konzeption werden die virtuellen Reibungskr?fte berechnet. Die Orbitalbewegungen der Oberfl?chen- und internen Wellen stellen die st?rksten Abweichungen vom mittleren Strom dar. Der auf diesen Bewegungen basierende Reynoldssche Spannungstensor wird aus dem Gleichungssystem (12) bis (14) ermittelt. Formale L?sungen sind (25) bis (28), wennW(z) aus (24) für beliebigeū(z) bekannt ist. Für Oberfl?chenwellen reduziert sich (24) auf (29) mit der N?herungsl?sung (34). Hieraus folgen (37) und (38). Absch?tzung der Integrale führt für Wellen endlicher Kamml?nge auf (55), woraus die Reibungskr?fte (56) bis (58) folgen. Station?re mittlere Str?mungen sind dann durch (61) beschreibbar. μ, gegeben durch (62), wird in Anlehnung an die bestehende Nomenklatur als “virtueller Reibungskoeffizient” bezeichnet. Er ist durch die Parameter des Seeganges bestimmt. Im Gegensatz zu V. W. Ekman werden Triftstr?me durch (67) bis (69) mit den L?sungen (71), (72) bzw. (73), (74) beschrieben. Aus dem sinusoidalen Verlauf der Reibungskoeffizienten (62) folgt eine Streifenstruktur des Triftstromes, wie sie Abb. 3 in Zuordnung zum Seegang zeigt. Die Geschwindigkeitsverteilung eines Streifens ist in Abb. 2 wiedergegeben. Eine Rechtsablenkung analog zur Ekman-Spirale tritt nicht auf; der Strom setzt stets in Richtung des Windes. Durch Messungen in der Ostsee mit Rhodamin wurde die theoretisch zu erwartende Streifenbildung für verschiedene Windgeschwindigkeiten qualitativ nachgewiesen (Abb. 4 und Tafeln 8 und 9).
Hierzu Tafeln 8 und 9 相似文献
The theory of the drift current and the virtual friction in the sea
Summary According to the Reynolds' procedure, the “turbulent” stresses due to surface and internal waves are computed. Starting from Eqs. (12) to (14) for linear internal and surface waves we get the solutions (25) to (28) withW(z) as a solution of (24) for arbitrary mean currents. For surface waves, (24) reduces to (29) with the approximate solution (34). From this follow (37) and (38). Estimating the integrals, we get (55) for waves of finite crests. From this follow (56) to (58) for the frictional forces due to waves. Stationary mean currents are then described by (61). The coefficient (62) is called “eddy viscosity”. It depends on the wave parameters. In contrast to Ekman's theory, drift currents are described by (67) to (69) with the solutions (71), (72) or (73), (74). Due to the sinusoidal shape of the eddy viscosity coefficients (62) the drift current has a band structure. This structure is shown in Fig. 3. The current distribution within a band is shown in Fig. 2. The current runs always in the direction of the wind, a deflection to the right due to Coriolis force is not observed. The forming of bands has been tested by Rhodamin. The results are in qualitative agreement with the theory (Fig. 4 and Plates 8 and 9).
La théorie du courant de dérive et du frottement virtuel en mer
Résumé Les forces de frottement virtuelles sont calculées d'après la conception de Reynolds. Les mouvements périodiques dans la couche de surface et les ondes internes constituent les écarts les plus importants par rapport au courant moyen. Le tenseur de Reynolds qui prend pour base ces mouvements, est obtenu au moyen du système d'équations (12) à (14). Les solutions obtenues sont (25) à (28) lorsqu'on conna?tW(z) au moyen de (24) pour desū(z) quelconques. Pour les ondes de surface, (24) se réduit à (29) avec la solution approchée (34); les solutions (37) et (38) s'en déduisent. De l'évaluation de l'intégrale on déduit (55) pour des ondes d'une longueur de crête finie et on en tire les forces de frottement (56) à (58). Des courants moyens stationnaires peuvent alors être décrits au moyen de (61). μ, donné par (62) est appelé ?coefficient de frottement virtuel? suivant les dénominations admises et il est déterminé par les paramètres des vagues. Contrairement à V. W. Ekman les courants de dérive sont décrits par (67) à (69) avec les solutions (71), (72) ou encore (73), (74). Du fait de la forme sinuso?dale prise par les coefficients de frottement (62) le courant de dérive se présente sous forme de bandes comme le montre la fig. 3 d'après l'état de la mer. La fig. 2 indique la distribution des vitesses dans une bande. On ne constate pas de déviation vers la droite analogue à celle de la spirale d'Ekman: le courant suit toujours la direction du vent. Des mesures effectuées en mer Baltique avec de la rhodamine ont confirmé quantitativement la formation des bandes théoriquement prévisibles pour différentes vitesses de vent (fig. 4 et planches 8 et 9).
Hierzu Tafeln 8 und 9 相似文献
904.
Hans Georg Wunderlich 《International Journal of Earth Sciences》1953,41(1):200-224
Zusammenfassung Konglomeratische Oberkreidesandsteine im Raum Bad Harzburg wurden auf ihren Geröll- und Leitmineralgehalt hin untersucht. Aus der Leitmineralverteilung ergibt sich die stratigraphische Stellung der Emscher- und Senonvorkommen zueinander; aus der Geröllführung geht hervor, daß der Brockengranit bereits im Oberemscher im Erosionsniveau lag und die Aufrichtungszone mesozoischer Gesteine am Harznordrand auch im Schimmerwaldgebiet bis zum Quadratensenon übertage vorhanden war, obwohl sie heute hier nicht mehr zu finden ist. Ursache dieser Erscheinung ist ein Schollenabbruch aus dem Dach des Ilsenburggranits, der an der Wende Granulaten-Quadratensenon erfolgte und zu einer lokalen Überfahrung der Aufrichtungszone geführt hat. Die geologische Neuaufnahme des Paläozoikums nördlich des Ilsenburggranites stellt die heutigen Lagerungsverhältnisse dieses Gebietes klar; sie werden bei der Rekonstruktion der ursprünglichen Lagerung und des Bewegungsvorganges zugrunde gelegt, dessen Ergebnis die teilweise Überdeckung des Vorlandes ist. Ein ähnlicher Vorgang liegt auch am benachbarten Okervorsprung der Harznordrandlinie vor.Unter Berücksichtigung der Ergebnisse neuer Tiefbohrungen im Subherzyn wird eine Auffassung von Ablauf und Ursachen tektonischer Vorgänge in diesem Raum entwickelt, die der herrschenden Meinung in zahlreichen Punkten widerspricht:Eine echte Faltung des Subherzyns im Mesozoikum, die bisher vermutete starke Nordbewegung der Harzscholle und eine ausschließliche Bindung tektonischer Vorgänge in diesem Gebiet an orogene Phasen wird abgelehnt.Auslösender Vorgang aller tektonischen Erscheinungen im Subherzyn ist eine vertikale Differentialbewegung der Harz- und Vorlandscholle, die sich seit Ausgang des Paläozoikums gleichsinnig, aber mit örtlich und zeitlich wechselnder Intensität, abspielt. 相似文献
905.
Jürg W. Schlatter Alfred Wüest Dieter M. Imboden 《Aquatic Sciences - Research Across Boundaries》1997,59(3):225-242
The artificial tracer sulphur hexafluoride (SF6) has been used to study the density-driven deep water exchange between two sill-separated basins of Lake Lucerne, Gersauersee and Urnersee. The sources of the density gradients between the two basins are (1) salinity differences between the major inlets due to the different geology of their drainage areas, and (2) temperature differences due to spatial variation of wind forcing. Wind speeds are generally larger in Urnersee, especially in spring during the so-called Föhn events, when winds blow from the south. In contrast, Gersauersee is protected form these winds. In spring 1989, a total of 630 g of SF6 was released at 80 to 120 m depth in the small Treib Basin located between Urnersee and Gersauersee. During about 100 days the distribution of SF6 in the lake was determined by gaschromatography. Two models are used to quantify the exchange flow, (1) a one-box mass balance model for SF6 in the deep part of Treib Basin, and (2) a one-dimensional diffusion/advection model describing the temporal and vertical temperature variation in Urnersee. According to the first model, the flow into the deep hypolimnion of Urnersee, decreases from 21·106 m3·d?1 at the end of March to about 8·106 m3·d?1 in late April. The second model yields similar flow rates. The decrease of the flow rate during spring, confirmed by both approaches, is consistent (1) with the decreasing strength of the density gradient above the sill during spring and early summer, and (2) with hydrographic information collected in Lake Lucerne during other years. 相似文献
906.
The Piedmont and Coastal Plain physiographic provinces comprise 80 percent of the Atlantic Coastal states from New Jersey to Georgia. The provinces are climatically similar. The soil moisture regime is udic. The soil temperature regime is typically thermic from Virginia through Georgia, although it is mesic at altitudes above 400 m in Georgia and above 320 m in Virginia. The soil temperature regime is mesic for the Piedmont and Coastal Plain from Maryland through New Jersey. The tightly folded, structurally complex crystalline rocks of the Piedmont and the gently dipping “layer-cake” clastic sedimentary rocks and sediments of the Coastal Plain respond differently to weathering, pedogenesis, and erosion. The different responses result in two physiographically contrasting terrains; each has distinctive near-surface hydrology, regolith, drainage morphology, and morphometry.The Piedmont is predominantly an erosional terrain. Interfluves are as narrow as 0.5 to 2 km, and are convex upward. Valleys are as narrow as 0.1 to 0.5 km and generally V-shaped in cross section. Alluvial terraces are rare and discontinuous. Soils in the Piedmont are typically less than 1 m thick, have less sand and more clay than Coastal Plain soils, and generally have not developed sandy epipedons. Infiltration rates for Piedmont soils are low at 6–15 cm/h. The soil/saprolite, soil/rock, and saprolite/rock boundaries are distinct (can be placed within 10 cm) and are characterized by ponding and/or lateral movement of water. Water movement through soil into saprolite, and from saprolite into rock, is along joints, foliation, bedding planes and faults. Soils and isotopic data indicate residence times consistent with a Pleistocene age for most Piedmont soils.The Coastal Plain is both an erosional and a constructional terrain. Interfluves commonly are broader than 2 km and are flat. Valleys are commonly as wide as 1 km to greater than 10 km, and contain numerous alluvial and estuarine terrace sequences that can be correlated along valleys for tens of kilometers. Coastal Plain soils are typically as thick as 2 to 8 m, have high sand content throughout, and have sandy epipedons. These epipedons consist of both A and E horizons and are 1 to 4 m thick. In Coastal Plain soils, the boundaries are transitional between the solum and the underlying parent material and between weathered and unweathered parent material. Infiltration rates for Coastal Plain soils are typically higher at 13–28 cm/h, than are those for Piedmont soils. Indeed, for unconsolidated quartz sand, rates may exceed 50 cm/h. Water moves directly from the soil into the parent material through intergranularpores with only minor channelization along macropores, joints, and fractures. The comparatively high infiltration capacity results in relatively low surface runoff, and correspondingly less erosion than on the Piedmont uplands.Due to differences in Piedmont and Coastal Plain erosion rates, topographic inversion is common along the Fall Zone; surfaces on Cenozoic sedimentary deposits of the Coastal Plain are higher than erosional surfaces on regolith weathered from late Precambrian to early Paleozoic crystalline rocks of the Piedmont. Isotopic, paleontologic, and soil data indicate that Coastal Plain surficial deposits are post-middle Miocene to Holocene in age, but most are from 5 to 2 Ma. Thus, the relatively uneroded surfaces comprise a Pliocene landscape. In the eastern third of the Coastal Plain, deposits that are less than 3.5 Ma include alluvial terraces, marine terraces and barrier/back-barrier complexes as morphostratigraphic units that cover thousands of square kilometers. Isotopic and soil data indicate that eastern Piedmont soils range from late Pliocene to Pleistocene in age, but are predominantly less than 2 Ma old. Thus, the eroded uplands of the Piedmont “peneplain” comprise a Pleistocene landscape. 相似文献
907.
R.T. Pidgeon A.A. Nemchin T. Geisler W. Compston 《Geochimica et cosmochimica acta》2007,71(5):1370-1381
Results are reported of an investigation of the age and origin of the exceptional zircon aggregate in an anorthositic clast from lunar breccia 73235. Cathodoluminescence and birefringence images show that the aggregate consists of numerous angular fragments of sector zoned primary zircon in a matrix of secondary zircon with an overall texture that resembles a pseudotachylite. SIMS U-Pb analyses of the primary fragments and the matrix yielded two clearly defined ages, an age of 4.315 ± 0.015 Ga and initial Th/U ratio of 0.21-0.35 for the primary zircon and an age of 4.187 ± 0.011 Ga and Th/U of 0.04-0.17, for the secondary zircon matrix. A Raman spectroscopic study the secondary matrix zircon was undertaken to investigate its structure. Results showed that the matrix has a zircon structure but there is also evidence for the presence of an amorphous component. Implications of the structural and U-Pb age data are discussed in terms of the origin and evolution of the aggregate and the history of lunar events. It is proposed that an original single, millimetre-sized, sector zoned zircon, formed at 4.31 Ga, was subjected to a severe shock event at 4.18 Ga. This event resulted in the fracturing of the zircon, the displacement and rotation of fragments, the compression of the aggregate to a lensoid shape, and the shock reduction of zircon to sub-micron-sized and amorphous granules in crush zones in the mosaic of fractures. Volatilisation loss of Pb and the addition of U to the secondary zircon is attributed to processes activated by the extreme thermal pulse which accompanied the 4.18 Ga shock event. Shock effects are seen in some of the primary fragments but Raman spectra of the primary and secondary zircon show no evidence for pressure-induced transformation of zircon to a scheelite structure. The zircon U-Pb system has not been affected by the ca. 3.95 Ga thermal pulse that accompanied formation of the host breccia although this event has largely reset the K-Ar systems. 相似文献
908.
909.
Navy Fan is a Late Pleistocene sand-rich fan prograding into an irregularly shaped basin in the southern California Borderland.
The middle fan, characterized by one active and two abandoned “distributary” channels and associated lobe deposits, at present
onlaps part of the basin slope directly opposite from the upper-fan valley, thus dividing the lower-fan/basin-plain regions
into two separate parts of different depths. Fine-scale mesotopographic relief on the fan surface and correlation of individual
turbidite beds through nearly 40 cores on the middle and lower fan provide data for evaluating the Late Pleistocene and Holocene
depositional processes.
Margin setting represents fan and/or source area 相似文献
910.
This article examines the conditions under which the pressure-work and viscous dissipation terms should be retained in the energy balance relation for single (liquid water or vapor) and two-phase (liquid water and vapor) fluid flow through porous media. It is shown that if one wishes to retain the pressure-work term, then one must also keep the viscous dissipation term in the energy balance. Consideration of steady non-isothermal radial flow demonstrates that both pressure-work and viscous dissipation are liable to have negligibly small effects in single phase liquid water and in two-phase liquid-vapor systems. This conclusion is, however, not generally valid for pure vapor systems; in this case, pressure-work and viscous dissipation can produce significant variations in the computed reservoir response. 相似文献