首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   83篇
  免费   5篇
测绘学   5篇
大气科学   16篇
地球物理   19篇
地质学   16篇
海洋学   5篇
天文学   23篇
自然地理   4篇
  2023年   2篇
  2021年   1篇
  2020年   4篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   4篇
  2015年   6篇
  2014年   3篇
  2013年   4篇
  2012年   3篇
  2011年   3篇
  2010年   2篇
  2009年   6篇
  2008年   5篇
  2007年   2篇
  2006年   5篇
  2005年   3篇
  2004年   4篇
  2003年   4篇
  2002年   3篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1997年   1篇
  1996年   4篇
  1995年   3篇
  1994年   1篇
  1990年   1篇
  1985年   1篇
  1983年   2篇
  1980年   2篇
  1970年   1篇
  1964年   1篇
排序方式: 共有88条查询结果,搜索用时 15 毫秒
61.
62.
The hill range of Vaivara Sinimäed in northeast Estonia consists of several narrow east- to northeast-trending glaciotectonic fold structures. The folds include tilted (dips 4–75°) Middle Ordovician (early Darriwilian) layered carbonate strata that were studied by mineralogical, palaeomagnetic, and rock magnetic methods in order to specify the postsedimentational history of the area and to obtain a better control over the palaeogeographic position of Baltica during the Ordovician. Mineralogical studies revealed that (titano)magnetite, hematite, and goethite are carriers of magnetization. Based on data from 5 sites that positively passed a DC tilt test, a south-easterly downward directed component A (Dref = 154.6°± 15.3°, Iref = 60.9°± 9.7°) was identified. The component is carried by (titano)magnetite, dates to the Middle Ordovician (Plat = 17.9°, Plon = 47.3°, K = 46.7, A95 = 11.3°), and places Baltica at mid-southerly latitudes. Observations suggest that in sites that do not pass the tilt test, the glaciotectonic event has caused some rotation of blocks around their vertical axis.  相似文献   
63.
This study assesses hydrodynamic and morphodynamic model sensitivity and functionality in a curved channel. The sensitivity of a depth‐averaged model to user‐defined parameters (grain size, roughness, transverse bed slope effect, transport relations and secondary flow) is tested. According to the sensitivity analysis, grain size, transverse bed slope effect and sediment transport relations are critical to simulated meander bend morphodynamics. The parametrization of grain size has the most remarkable effect: field‐based grain size parametrization is necessary in a successful morphodynamic reconstruction of a meander bend. The roughness parametrization method affects the distribution of flow velocities and therefore also morphodynamics. The combined effect of various parameters needs further research. Two‐dimensional (2D) and three‐dimensional (3D) reconstructions of a natural meander bend during a flood event are assessed against field measurements of acoustic Doppler current profiler and multi‐temporal mobile laser scanning data. The depth‐averaged velocities are simulated satisfactorily (differences from acoustic Doppler current profiler velocities 5–14%) in both 2D and 3D simulations, but the advantage of the 3D hydrodynamic model is unquestionable because of its ability to model vertical and near‐bed flows. The measured and modelled near‐bed flow, however, differed notably from each other's, the reason of which was left open for future research. It was challenging to model flow direction beyond the apex. The 3D flow features, which also affected the distribution of the bed shear stress, seem not to have much effect on the predicted morphodynamics: the 2D and 3D morphodynamic reconstructions over the point bar resembled each other closely. Although common features between the modelled and measured morphological changes were also found, some specific changes that occurred were not evident in the simulation results. Our results show that short‐term, sub‐bend scale morphodynamic processes of a natural meander bend are challenging to model, which implies that they are affected by factors that have been neglected in the simulations. The modelling of short‐term morphodynamics in natural curved channel is a challenge that requires further study. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
64.
High altitude and latitude findings of subfossil peatland pine trees were unearthed from the region of NW Finnish Lapland and dated by 14C and tree-ring methods. The depositional history of the trees illustrated two distinct peatland pine phases dated to Middle Holocene intervals 4900–4400 and 4100–3400 cal. a BC. It seems evident that both thermal and hydroclimatic fluctuations have played roles of varying importance in the establishment of this pine population and its demise. The presence of these pines, from a site ~60 km north of the coniferous timberline and conditions ~1 °C and 100 degree-days colder than those at the present-day timberline, concurs with previous studies demonstrating the association between the high-latitude summer-temperature cooling and circumpolar timberline retreat since the Middle Holocene due to Milankovitch forcing. On the other hand, the peatland pine recruitment was made possible by drier than present surface conditions during the previously reconstructed Middle Holocene drought anomaly (Hyvärinen-Alhonen event). Our data suggest this event was not continuous but reached its two-phase climax during the peatland pine phases, with an interruption of several centuries with moister surface conditions between 4400 and 4100 cal. a BC. The findings highlight the sensitivity of well-dated peatland tree assemblages in terms of recording past climatic evolution and events and the need for new collections from north and south Fennoscandia and the Baltic region, for more detailed analyses over extended time intervals and regions.  相似文献   
65.
66.
We present a series of sensitivity studies conducted using a one-dimensional Mars model (hereafter 1D model) of the University of Helsinki (UH). The reference case was the Pathfinder simulation for the second Martian day. Pathfinder temperatures and new wind speed observations from near the surface were available for validation. The Monin–Obukhov similarity parametrization for surface-layer turbulence was tested with various forms for the stability functions, and compared with the Pathfinder observations. The Dyer–Businger (DB) forms proved appropriate in the highly turbulent daytime Martian boundary layer. An iterative surface-layer treatment was introduced; this did not significantly change the results but showed that the Obukhov length L was about –30 m during daytime and +%5 m during nighttime. The importance of including water vapour and dust in the radiative transfer was tested in the Pathfinder simulations. Water vapour seems to have a significant effect, especially on the nighttime surface temperatures, by increasing the downwelling longwave radiation. Dust acts similarly and has an even greater longwave effect. It also extinguishes solar radiation strongly, thereby damping the surface temperature cycle. The sensitivity of the diurnal surface temperature variation on various physical properties of the soil (regolith) was studied. Thermal inertia and thermal conductivity had the largest effects. The Beagle 2 Lander of the European Space Agency (ESA) landed unsuccessfully on Mars at the end of the year 2003. The selected landing site was in the Northern Hemisphere tropics where seasonal variations are small, and the landing time corresponded roughly to early spring (Ls = 330°). The expected weather conditions at the site were simulated for four approximate Martian months consisting of 60 Martian solar days each. The driving conditions for the simulations were taken from the Mars climate database.  相似文献   
67.
Aircraft observations of the atmospheric boundary layer (ABL) over Arctic sea ice were made during non-stationary conditions of cold-air advection with a cloud edge retreating through the study region. The sea-ice concentration, roughness, and ABL stratification varied in space. In the ABL heat budget, 80% of the Eulerian change in time was explained by cold-air advection and 20% by diabatic heating. With the cloud cover and inflow potential temperature profile prescribed as a function of time, the air temperature and near-surface fluxes of heat and momentum were well simulated by the applied two-dimensional mesoscale model. Model sensitivity tests demonstrated that several factors can be active in generating unstable stratification in the ABL over the Arctic sea ice in March. In this case, the upward sensible heat flux resulted from the combined effect of clouds, leads, and cold-air advection. These three factors interacted non-linearly with each other. From the point of view of ABL temperatures, the lead effect was far less important than the cloud effect, which influenced the temperature profiles via cloud-top radiative cooling and radiative heating of the snow surface. The steady-state simulations demonstrated that under overcast skies the evolution towards a deep, well-mixed ABL may take place through the merging of two mixed layers one related to mostly shear-driven surface mixing and the other to buoyancy-driven top-down mixing due to cloud-top radiative cooling.  相似文献   
68.
Based on model computations, the regeneration of Scots pine (Pinus sylvestris L.) was studied at the northern timber line in Finland (70°N) in relation to elevating temperature and atmospheric CO2. If a transient increase of 4°C was assumed during the next 100 years, the length of growing season increased from the current 110–120 days to 150–160 days. This was associated with ca. 5°C increase in the soil temperature over June–August with larger variability in temperature and deeper freezing of the soil due to the reduced depth and duration of the snow cover. At the same time, the moisture content of the surface soil decreased ca. 10% and was more variable, due to less infiltration of water into the soil as a consequence of the enhanced evapotranspiration and deeper freezing of the soil. The temperature elevation alone, or combined with elevating CO2, increased flowering and the subsequent seed crop of Scots pine with a decrease in the frequency of zero crops. In both cases, temperature elevation substantially increased the success of regeneration in terms of the number of seedlings produced after each seed crop. The increasing number of mature seeds was mainly responsible for the enhanced regeneration, but increasing soil temperature also increased the success of regeneration. The soil moisture was seldom limited for seed germination. In terms of the density of seedling stands, and the height and diameter growth of the seedlings, the establishment of a seedling stand was substantially improved under the combined elevation of temperature and CO2 in such a way that the temperature increased the number of mature seeds and enhanced germination of seeds and CO2 increased seedling growth. Even under the changing climatic conditions, however, the growth of the seedling stands was slow, which indicated that the northward advance of the timber line would probably be very slow, even though regeneration was no longer a limiting factor.  相似文献   
69.
In this short communication we highlight the NATO Advanced Research Workshop (ARW) “Atmospheric Boundary Layers: Modelling and Applications for Environmental Security”, to be held in Dubrovnik, Croatia, 18–22 April 2006 (http:// pbl-nato-arw.dmi.dk) and the “Summer School on Air-Sea Interaction” to be held in Helsinki, Finland, 28 August–1 September 2006 (http://www.scasi.fi). These two events are connected to the ongoing Ev Marie Curie Chair Project “Planetary boundary layers – Theory, modelling and role in earth systems” (PBL – TMRES, Contract MEXC-CT-2003-509742, www.atm.helsinki.fi/PBL/).  相似文献   
70.
The aim of this study was to estimate the potential impacts of climate change on the spatial patterns of primary production and net carbon sequestration in relation to water availability in Norway spruce (Picea abies) dominated forests throughout Finland (N 60°–N 70°). The Finnish climatic scenarios (FINADAPT) based on the A2 emission scenario were used. According to the results, the changing climate increases the ratio of evapotranspiration to precipitation in southern Finland, while it slightly decreases the ratio in northern Finland, with regionally lower and higher soil water content in the south and north respectively. During the early simulation period of 2000–2030, the primary production and net carbon sequestration are higher under the changing climate in southern Finland, due to a moderate increase in temperature and atmospheric CO2. However, further elevated temperature and soil water stress reduces the primary production and net carbon sequestration from the middle period of 2030–2060 to the final period of 2060–2099, especially in the southernmost region. The opposite occurs in northern Finland, where the changing climate increases the primary production and net carbon sequestration over the 100-year simulation period due to higher water availability. The net carbon sequestration is probably further reduced by the stimulated ecosystem respiration (under climate warming) in southern Finland. The higher carbon loss of the ecosystem respiration probably also offset the increased primary production, resulting in the net carbon sequestration being less sensitive to the changing climate in northern Finland. Our findings suggest that future forest management should carefully consider the region-specific conditions of sites and adaptive practices to climate change for maintained or enhanced forest production and carbon sequestration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号