首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   147篇
  免费   6篇
  国内免费   2篇
测绘学   17篇
大气科学   4篇
地球物理   38篇
地质学   61篇
海洋学   7篇
天文学   20篇
自然地理   8篇
  2024年   1篇
  2022年   1篇
  2021年   2篇
  2020年   2篇
  2019年   4篇
  2018年   4篇
  2017年   3篇
  2016年   10篇
  2015年   7篇
  2014年   7篇
  2013年   19篇
  2012年   8篇
  2011年   6篇
  2010年   4篇
  2009年   6篇
  2008年   1篇
  2006年   2篇
  2005年   2篇
  2004年   3篇
  2003年   3篇
  2002年   1篇
  1999年   3篇
  1998年   3篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1989年   2篇
  1988年   2篇
  1986年   1篇
  1985年   1篇
  1984年   5篇
  1983年   4篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1979年   4篇
  1978年   2篇
  1977年   2篇
  1976年   2篇
  1975年   4篇
  1974年   4篇
  1973年   2篇
  1972年   1篇
  1971年   1篇
  1970年   3篇
  1949年   1篇
排序方式: 共有155条查询结果,搜索用时 31 毫秒
51.
Using kilometric arrays of air Cherenkov telescopes at short wavelengths, intensity interferometry may increase the spatial resolution achieved in optical astronomy by an order of magnitude, enabling images of rapidly rotating hot stars with structures in their circumstellar disks and winds, or mapping out patterns of nonradial pulsations across stellar surfaces. Intensity interferometry (once pioneered by Hanbury Brown and Twiss) connects telescopes only electronically, and is practically insensitive to atmospheric turbulence and optical imperfections, permitting observations over long baselines and through large airmasses, also at short optical wavelengths. The required large telescopes (~10 m) with very fast detectors (~ns) are becoming available as the arrays primarily erected to measure Cherenkov light emitted in air by particle cascades initiated by energetic gamma rays. Planned facilities (e.g., CTA, Cherenkov Telescope Array) envision many tens of telescopes distributed over a few square km. Digital signal handling enables very many baselines (from tens of meters to over a kilometer) to be simultaneously synthesized between many pairs of telescopes, while stars may be tracked across the sky with electronic time delays, in effect synthesizing an optical interferometer in software. Simulated observations indicate limiting magnitudes around mV = 8, reaching angular resolutions ~30 μarcsec in the violet. The signal-to-noise ratio favors high-temperature sources and emission-line structures, and is independent of the optical passband, be it a single spectral line or the broad spectral continuum. Intensity interferometry directly provides the modulus (but not phase) of any spatial frequency component of the source image; for this reason a full image reconstruction requires phase retrieval techniques. This is feasible if sufficient coverage of the interferometric (u, v)-plane is available, as was verified through numerical simulations. Laboratory and field experiments are in progress; test telescopes have been erected, intensity interferometry has been achieved in the laboratory, and first full-scale tests of connecting large Cherenkov telescopes have been carried out. This paper reviews this interferometric method in view of the new possibilities offered by arrays of air Cherenkov telescopes, and outlines observational programs that should become realistic already in the rather near future.  相似文献   
52.
If an electrically conducting medium (e.g. a dusty plasma) rotates around a gravitating central body, which possesses an axisymmetric dipole field, the medium is supported to two-thirds by the centrifugal force and to one-third by electromagnetic forces under the condition that the magnetic field is strong enough to controll the motion. If the electromagnetic forces disappear — e.g. by a de-ionisation of the dusty plasma — the medium will fall down to two-thirds of its original central distance. The result of this process will be a cosmogonic shadow effect which is described in some detail.The Voyager 1/Saturn results demonstrate that the macro-structure of the Saturnian ring system can be explained as a result of this effect working at the formation of the system. The agreement between the theoretical results and the observations is better than a few percent.A similar analysis of the asteroidal belt shows that its macro-structure can also be explained by the cosmogonic shadow effect. The agreement between theory and observations is perhaps even better than in the Saturnian ring system.The observational results demonstrate that during their formation both the Saturnian ring and the asteroidal belt passed a plasma state dominated by electromagnetic effects.  相似文献   
53.
The possibility that annihilation is a major source of energy in cosmic physics is discussed. Since Klein suggested that the Universe might be matter-antimatter symmetric over two decades ago, there have been a significant number of papers developing the consequences of this view. These, however, have been largely ignored in the general literature. There have also been a number of papers claiming to prove that there cannot be antimatter anywhere in the observable Universe. In the first part of this paper an assessment of the differing views is given, and it is shown that none of the arguments against antimatter is convincing. The existence of antimatter is not in conflict with any observational fact. The reason for the negative attitude towards the existence of antimatter seems to be that this view is in conflict with a number of speculative but generally accepted theories. However, recent magnetospheric and heliospheric research, includingin situ measurements of cosmic plasmas, is now drastically changing cosmic plasma physics in a way that leads to growing scepticism about quite a few of the speculative theories.An attempt is made to develop a simple phenomenological model of QSOs based on star-antistar collisions. This model can account for such basic observational properties as the acceleration to very large (non-cosmological) velocities, the existence of broad emission lines, and at the same time narrow absorption lines with different redshifts. The absence of blueshifts is also explained. The model predicts that relatively young QSOs should be at cosmological distances whereas the old ones may very well be much closer to us than indicated by their redshift.  相似文献   
54.
55.
(7)Formation of celestial bodies. The basic concepts of the accretional process are discussed, and the inadequacy of the contractional model is pointed out. A comparison is made between the general pre-planetary state on the one hand and the present state in the asteroidal region on the other. A model for accretion of resonance-captured grains leading to the formation of resonance-captured planets and satellites is suggested.(8)Spin and accretion. The relation between the accretional process and the spin of planets is analyzed.(9)Accretion of planets and satellites. It is shown that jet streams are a necessary intermediate stage in the formation of celestial bodies. The time sequence of planet formation is analyzed, and it is shown that the newly accreted bodies have a characteristic internal heat structure; the cases of the Earth and the Moon are considered in detail. A region of high initial temperature is found at 0.4 of the present Earth radius, whereas the culminating temperature of the Moon is near its present surface. An accretional heat wave is found to proceed outwards, and may produce the observed differentiation features.  相似文献   
56.
The Denizli Basin is a fault‐bounded Neogene–Quaternary depression located in the Western Anatolian Extensional Province, Western Turkey. The basin is a unique geological site with abundant active and fossil (Quaternary) travertine and tufa deposits. Fluid inclusion microthermometry and isotopic analysis were applied to study the genesis of the Ball?k fossil travertine deposits, located in the south‐eastern part of the basin. Microthermometry on fluid inclusions indicates that the main travertine precipitating and cementing fluids are characterized by low salinity (<0·7 wt% NaCl equivalent) and variable temperatures that cluster at <50°C and ca 100°C. Fluids of meteoric origin have been heated by migration to the deeper subsurface, possibly in a local high geothermal gradient setting. A later uncommon cementation phase is related to a fluid with a significantly higher salinity (25·5 to 26·0 wt% bulk). The fluid obtained its salinity by interaction with Late Triassic evaporite layers. Strontium isotopes indicate that the parent carbonate source rock of the different travertine precipitates is very likely to be the Triassic limestone of the Lycian Nappes. Carbon isotopes suggest that the parent CO2 gas originated from thermal decarbonation of the Lycian limestones with minor contributions of magmatic degassing and organic soil CO2. Oxygen isotopes confirm the meteoric origin of the fluids and indicate disequilibrium precipitation because of evaporation and degassing. Results were integrated within the available geological data of the Denizli Basin in a generalized travertine precipitation model, which enhanced the understanding of fossil travertine systems. The study highlights the novel application of fluid inclusion research in unravelling the genesis of continental carbonates and provides several recommendations for hydrocarbon exploration in travertine‐bearing sedimentary basins. The findings suggest that travertine bodies and their parent carbonate source rocks have the potential to constitute interesting subsurface hydrocarbon reservoirs.  相似文献   
57.
Abstract

This article deals with some instructional applications of high resolution, multispectral digital imagery in the authors' respective undergraduate, introductory remote sensing courses. Both authors participated in the U.S. National Council for Geographic Education's Remote Sensing Task Force's high resolution image evaluation program. This paper represents a continuation of the work conducted under this evaluation program.  相似文献   
58.
The stability properties of the collisionless plasma and encounterless stellar gas described by the Vlasov equations are studied. The introduction of the multiple Water Bag model allows, for one-dimensional plane geometry, a treatment of the general case and removes some of the difficulties connected with the formulation of the energy variation. From this last result it can be deduced that both plasma and stellar systems steady state described by a monotonically decreasing distributionF() are stable. The demonstration is extended to the spherically symmetric case for self-gravitating gas. Next the constraint of a monotonically decreasingF() is relaxed and it is supposed that the instability appears through the point =0. This is known to be true for some type of plasma instabilities (two streams) but is a simple working hypothesis in the gravitational case. For this marginal mode theN bags equations degenerate into a single wave equation and the stability of the system is given by the sign of the eigenvalues of a Schroedinger type operator. A simple physical picture is obtained for the plasma case where the quantitity (dF/d) dV (the square of the local maximum wavenumber of instability) is introduced. A virtual variation of this quantity indicates if the initial steady state was stable or unstable.  相似文献   
59.
60.
Investigations of tectonic features, such as faults, are important challenges for geologists and engineers. Although direct investigational methods, such as boreholes and trenches, have the potential to provide accurate data, these direct methods are usually expensive and time consuming, and give only punctual insights into subsurface structures. Geophysical methods, for example electric surveys and ground penetrating radar, are less expensive and faster to implement. However, these geophysical methods may be difficult or sometimes even impossible to apply in regions with rough topography or regions which are highly urbanized. In this study, we propose an easy-to-use and affordable method to detect fault zones based on ambient vibration observations. We apply this method in the region between Visp and Unterstalden (canton Valais, Switzerland) on a small fault branch, which has no explicit surface expression, and which is linked to a major fault zone, the Simplon Fault Zone. The assumption is that the fault of interest is surrounded by damage zone consisting of fractured rock, and that this results in lateral changes of both seismic velocity and attenuation. The objective was, first, to identify such lateral changes in the observed seismic wave-field, and second, to map any anomalies and combine them with the available geological information. In this way, we were able to follow the fault trace even without a clear surface expression of the fault. Our observations showed the existence of a signature in the power spectra of the seismic noise that may correspond to a damage zone. Such signature is observed along the trace of the expected fault.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号