首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   158篇
  免费   18篇
  国内免费   2篇
测绘学   4篇
大气科学   19篇
地球物理   59篇
地质学   51篇
海洋学   12篇
天文学   17篇
自然地理   16篇
  2024年   1篇
  2023年   1篇
  2021年   10篇
  2020年   14篇
  2019年   16篇
  2018年   7篇
  2017年   17篇
  2016年   11篇
  2015年   14篇
  2014年   13篇
  2013年   13篇
  2012年   2篇
  2011年   2篇
  2010年   7篇
  2009年   6篇
  2008年   7篇
  2007年   3篇
  2006年   6篇
  2005年   3篇
  2004年   5篇
  2003年   6篇
  2002年   4篇
  2001年   2篇
  2000年   2篇
  1997年   1篇
  1988年   1篇
  1986年   1篇
  1984年   1篇
  1981年   1篇
  1980年   1篇
排序方式: 共有178条查询结果,搜索用时 15 毫秒
91.
Previous work on identifying opportunities for Pacific Island countries to improve the economic returns from their tuna resources in the Western and Central Pacific Ocean (WCPO) has not generally included articulation of aspirations from Islanders themselves. However, generating such an understanding is increasingly important as these countries assert their positions in regional fisheries policy making. This study analyses the self-identified aspirations of industry and government representatives from six Pacific Island countries and finds a wider diversity of attitudes, strategies and success than is generally recognised. Implications for negotiations in the WCPFC are then discussed.  相似文献   
92.
Glacier‐fed river thermal regimes vary markedly in space and time; however, knowledge is limited on the fundamental processes controlling alpine stream temperature dynamics. To address the research gap, this study quantified heat exchanges at the water surface and bed of the Taillon glacier‐fed stream, French Pyrénées. Hydro‐meteorological observations were recorded at 15‐min intervals across two summer melt seasons (2010 and 2011), and energy balance components were measured or estimated based on site‐specific data. Averaged over both seasons, net radiation was the largest heat source (~80% of total flux); sensible heat (~13%) and friction (~3%) were also sources, while heat exchange across the channel–streambed interface was negligible (<1%). Latent heat displayed distinct interannual variability and contributed 5% in 2010 compared with 0.03% in 2011. At the sub‐seasonal scale, latent heat shifted from source to sink, possibly linked to the retreating valley snowline that changed temperature and humidity gradients. These findings represent the first, multiyear study of the heat exchange processes operating in a glacier‐fed stream, providing fundamental process understanding; the research highlights the direct control antecedent (winter) conditions that have on energy exchange and stream temperature during summer months. In particular, the timing and volume of snowfall/snowmelt can drive thermal dynamics by the following: (1) altering the length of the stream network exposed to the atmosphere and (2) controlling the volume and timing of cold water advection downstream. Finally, this study highlights the need to develop long‐term hydro‐meteorological monitoring stations to improve the understanding of these highly dynamic, climatically sensitive systems. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
93.
Climate change is altering river temperature regimes, modifying the dynamics of temperature‐sensitive fishes. The ability to map river temperature is therefore important for understanding the impacts of future warming. Thermal infrared (TIR) remote sensing has proven effective for river temperature mapping, but TIR surveys of rivers remain expensive. Recent drone‐based TIR systems present a potential solution to this problem. However, information regarding the utility of these miniaturised systems for surveying rivers is limited. Here, we present the results of several drone‐based TIR surveys conducted with a view to understanding their suitability for characterising river temperature heterogeneity. We find that drone‐based TIR data are able to clearly reveal the location and extent of discrete thermal inputs to rivers, but thermal imagery suffers from temperature drift‐induced bias, which prevents the extraction of accurate temperature data. Statistical analysis of the causes of this drift reveals that drone flight characteristics and environmental conditions at the time of acquisition explain ~66% of the variance in TIR sensor drift. These results shed important light on the factors influencing drone‐based TIR data quality and suggest that further technological development is required to enable the extraction of robust river temperature data. Nonetheless, this technology represents a promising approach for augmenting in situ sensor capabilities and improved quantification of advective inputs to rivers at intermediate spatial scales between point measurements and “conventional” airborne or satellite remote sensing.  相似文献   
94.
95.
The stream hydrograph is an integration of spatial and temporal variations in water input, storage and transfer processes within a catchment. For glacier basins in particular, inferences concerning catchment‐scale processes have been developed from the varying form and magnitude of the diurnal hydrograph in the proglacial river. To date, however, such classifications of proglacial diurnal hydrographs have developed in a relatively subjective manner. This paper develops an objective approach to the classification of diurnal discharge hydrograph ‘shape’ and ‘magnitude’ using a combination of principal components analysis and cluster analysis applied to proglacial discharge time‐series and to diurnal bulk flow indices. The procedure is applied to discharge time‐series from two different glacier basins and four separate ablation seasons representing a gradient of increasing hydrological perturbation as a result of (i) variable water inputs generated by rainstorm activity and (ii) variable location and response of hydrological stores through a systematic decrease in catchment glacierized area. The potential of the technique for application in non‐glacial hydrological contexts is discussed. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   
96.
Present day inertial surveys are limited to single traverse runs in which the number of unknown system parameters to be determined are few, depending on the number of control points available along the traverse. Further, conventional inertial surveys are generally restricted to the determination of coordinates with no possibility for a rigorous post-mission adjustment of the observations. The consequence is the continued presence of systematic trends in the residuals, even after the use of error models such as those proposed by Ball, Gregerson or Kouba. Future work aiming at higher accuracies obviously requires more comprehensive models and rigorous adjustment procedures. These can be accomplished by the development of such error models and by the use of “area surveys”, instead of the single traverses, together with rigorous adjustment procedures suitable for the network of criss-crossing lines inertially surveyed. In such a network the cross-over points serve as constraints for the geodetic parameters (latitude, longitude, height, gravity anomaly, deflection components) and allow the addition of hardware and software related error parameters. Thus an opportunity is provided to effectively self-calibrate the system—a concept successfully used, for example, in photogrammetry or in satellite tracking. The number and the strength of such parameters depend on the number of control and cross-over points. The adjustment, of course, also provides the necessary statistical information on the adjusted parameters, such as their precision and the correlation between them. The presentation will describe current work at OSU in this area. Presented at the Second International Symposium on Inertial Technology for Surveying and Geodesy, Banff, Canada, June 1–5, 1981.  相似文献   
97.
98.
99.
Over a 4‐month summer period, we monitored how forest (Pinus sylvestris ) and heather moorland (Calluna spp. and Erica spp.) vegetation canopies altered the volume and isotopic composition of net precipitation (NP) in a southern boreal landscape in northern Scotland. During that summer period, interception losses were relatively high and higher under forests compared to moorland (46% of gross rainfall [GR] compared with 35%, respectively). Throughfall (TF) volumes exhibited marked spatial variability in forests, depending upon local canopy density, but were more evenly distributed under heather moorland. In the forest stands, stemflow was a relatively small canopy flow path accounting for only 0.9–1.6% of NP and only substantial in larger events. Overall, the isotopic composition of NP was not markedly affected by canopy interactions; temporal variation of stable water isotopes in TF closely corresponded to that of GR with differences of TF‐GR being ?0.52‰ for δ2H and ?0.14‰ for δ18O for forests and 0.29‰ for δ2H and ?0.04‰ for δ18O for heather moorland. These differences were close to, or within, analytical precision of isotope determination, though the greater differences under forest were statistically significant. Evidence for evaporative fractionation was generally restricted to low rainfall volumes in low intensity events, though at times, subtle effects of liquid–vapour moisture exchange and/or selective transmission though canopies were evident. Fractionation and other effects were more evident in stemflow but only marked in smaller events. The study confirmed earlier work that increased forest cover in the Scottish Highlands will likely cause an increase in interception and green water fluxes at the expenses of blue water fluxes to streams. However, the low‐energy, humid environment means that isotopic changes during such interactions will only have a minor overall effect on the isotopic composition of NP.  相似文献   
100.
Increasing river temperatures are a threat to cold water species including ecologically and economically important freshwater fish, such as Atlantic salmon. In 2018, ca. 70% of Scottish rivers experienced temperatures which cause thermal stress in juvenile salmon, a situation expected to become increasingly common under climate change. Management of riparian woodlands is proven to protect cold water habitats. However, creation of new riparian woodlands can be costly and logistically challenging. It is therefore important that planting can be prioritized to areas where it is most needed and can be most effective in reducing river temperatures. The effects of riparian woodland on channel shading depend on complex interactions between channel width, orientation, aspect, gradient, tree height and solar geometry. Subsequent effects on river temperature are influenced by water volume and residence time. This study developed a deterministic river temperature model, driven by energy gains from solar radiation that are modified by water volume and residence time. The resulting output is a planting prioritization metric that compares potential warming between scenarios with and without riparian woodland. The prioritization metric has a reach scale spatial resolution, but can be mapped at large spatial scales using information obtained from a digital river network. The results indicate that water volume and residence time, as represented by river order, are a dominant control on the effectiveness of riparian woodland in reducing river temperature. Ignoring these effects could result in a sub-optimal prioritization process and inappropriate resource allocation. Within river order, effectiveness of riparian shading depends on interactions between channel and landscape characteristics. Given the complexity and interacting nature of controls, the use of simple universal planting criteria is not appropriate. Instead, managers should be provided with maps that translate complex models into readily useable tools to prioritize riparian tree planting to mitigate the impacts of high river temperatures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号